1 / 12

STRONG TRUE SCORE THEORY- IRT

STRONG TRUE SCORE THEORY- IRT. LECTURE 12 EPSY 625. Strong True Score Theory. Equivalent to g-theory: subject ability item difficulty Extension of true score theory Uses form of logistic regression: e Dag(  - bg ) Pr(1) = 1 + e Dag(  - bg ). Strong True Score Theory.

erno
Download Presentation

STRONG TRUE SCORE THEORY- IRT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. STRONG TRUE SCORE THEORY- IRT LECTURE 12 EPSY 625

  2. Strong True Score Theory Equivalent to g-theory: subject ability item difficulty Extension of true score theory Uses form of logistic regression: eDag( - bg ) Pr(1) = 1 + eDag( - bg )

  3. Strong True Score Theory Equivalent to g-theory: subject ability item difficulty Extension of true score theory Uses form of logistic regression: eDag( - bg ) Pr(1) = 1 + eDag( - bg )

  4. Item Response Model Probability of Correct Answer Discrimination ag 1.0 .50 0 Pg() ABILITY Assumptions: .local independence of items .single ability true score .logistic model for items: eDag( - bg ) Pr(1) = 1 + eDag( - bg ) Difficulty bg Difficulty: the ability score needed for a 50% probability of getting the item right Discrimination: slope of the IRT curve at the 50% probability intersection

  5. MODELS • One parameter model- only bg varies across items • Two parameter model- both ag and bg vary across items

  6. 1-PARAMETER ESTIMATION • MPLUS: TITLE: this is an example of a one –parameter logistic item response theory (IRT) model DATA: FILE IS ex5.5.dat; VARIABLE: NAMES ARE u1-u5; CATEGORICAL ARE u1-u5; ANALYSIS: ESTIMATOR = MLR; MODEL: f BY u1 (1) u2 (1) u3 (1) u4 (1) u5 (1); OUTPUT: TECH1 TECH8;

  7. MPLUS 5.5 OUTPUT Thresholds Estimates S.E. Est./S.E. F BY U1 1.000 0.000 0.000 U2 0.982 0.243 4.042 U3 0.982 0.243 4.042 U4 0.982 0.243 4.042 U5 0.982 0.243 4.042 Thresholds U1$1 -0.355 0.109 -3.256 U2$1 -0.431 0.108 -4.005 U3$1 -0.441 0.108 -4.080 U4$1 0.294 0.107 2.752 U5$1 0.459 0.108 4.256 Fixed slopes Item difficulties

  8. 2-PARAMETER ESTIMATION • MPLUS: TITLE: this is an example of a two-parameter logistic item response theory (IRT) model DATA: FILE IS ex5.5.dat; VARIABLE: NAMES ARE u1-u20; CATEGORICAL ARE u1-u20; ANALYSIS: ESTIMATOR = MLR; MODEL: f BY u1-u20; OUTPUT: TECH1 TECH8;

  9. MPLUS 5.5 OUTPUT • Thresholds • U1$1 -0.366 0.111 -3.301 • U2$1 -0.440 0.113 -3.882 • U3$1 -0.324 0.107 -3.031 • U4$1 -0.330 0.115 -2.862 • U5$1 -0.439 0.111 -3.957 • U6$1 -0.430 0.097 -4.415 • U7$1 -0.450 0.115 -3.902 • U8$1 -0.418 0.111 -3.747 • U9$1 -0.435 0.112 -3.890 • U10$1 -0.447 0.110 -4.064 • U11$1 0.597 0.122 4.890 • U12$1 0.555 0.112 4.942 • U13$1 0.468 0.111 4.195 • U14$1 0.280 0.102 2.747 • U15$1 0.283 0.103 2.745 • U16$1 0.401 0.109 3.689 • U17$1 0.602 0.119 5.071 • U18$1 0.463 0.116 3.992 • U19$1 0.661 0.108 6.134 • U20$1 0.479 0.115 4.172 • MODEL RESULTS • Estimates S.E. Est./S.E. • F BY • U1 1.000 0.000 0.000 • U2 1.035 0.204 5.085 • U3 0.893 0.173 5.156 • U4 1.127 0.233 4.829 • U5 0.955 0.205 4.657 • U6 0.506 0.142 3.572 • U7 1.100 0.223 4.923 • U8 1.017 0.213 4.769 • U9 0.995 0.209 4.770 • U10 0.945 0.194 4.870 • U11 1.205 0.227 5.298 • U12 0.957 0.188 5.104 • U13 0.982 0.203 4.838 • U14 0.741 0.168 4.396 • U15 0.772 0.156 4.938 • U16 0.926 0.195 4.740 • U17 1.116 0.229 4.879 • U18 1.097 0.212 5.180 • U19 0.761 0.165 4.604 • U20 1.067 0.211 5.046 Slopes (a parameters) difficulties (b parameters)

  10. Three parameter model • ag and bg vary across items • parameter cg for guessing is added: • Empirical studies indicate cg is usually lower than guessing rate • Requires 5,000 - 10,000 cases for stable estimation (ETS, ACT or NAEP samples)

  11. Probability of Correct Answer ag 1.0 .50 0 Pg() cg bg ABILITY

  12. MULTIDIMENSIONAL IRT - CONCEPTS AND ISSUES Pg() .5 Pg() 1 (1,2) - Difficulty in getting estimates - Inconsistent with factor model analysis

More Related