160 likes | 272 Views
Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of Technology, NL 2 Comenius University Bratislava, SLO ISSS 2005 Pardubice, Czech Republic 12-14- September 2005. why? to visualize, illustrate, animate.
E N D
Computer training simulation of monolithic column HPLC Jetse C. Reijenga1 and Milan Hutta2 1Eindhoven University of Technology, NL 2Comenius University Bratislava, SLO ISSS 2005 Pardubice, Czech Republic 12-14- September 2005
why? to visualize, illustrate, animate H. McNair, Basic Liquid Chromatography, http://hplc.chem.shu.edu/HPLC
Computer training simulation of monolithic column HPLC
J.C. Reijenga, MEKC animation (SDS conc change) from http://edu.chem.tue.nl/ce
application of computer simulations demonstration classroom teaching practical training in (dry) lab as step towards optimization
original software specs #1 200 - 400 nm 75 samples 0 - 65 oC J.C. Reijenga, M. Hutta, J. Chromatogr. A 903 (2000) 41-48
original software specs #2 50 - 500 mm 0.1 - 25 mm 1 - 250 µm MeOH ACN THF 5 - 500 mm 1 - 10 mm 1 - 25 µm MeOH ACN J.C. Reijenga, M. Hutta, J. Chromatogr. A 903 (2000) 41-48
other software extensions #1 • Zorbax C8 • Lichrospher100 RP18 5µm • Lichrospher100 CN 5µm • Spherisorb ODS-2 5µm • Aluspher100 RPSelectB 5µm • TSKgel Super ODS • ChromolithPerformance RP C18e
extensions #2, model refinement • 2 parameter model • Valid 20 - 50% • Real experiments • 3 (4) parameter model • Valid 5 - 90% • ChromSword
modeling monoliths #1 pressure drop Kozeny-Carman relation: ΔP = u L / B0 with specific permeability: B0 = 3 dp2 / Kc (1 - )2 where the Kozeny "constant" Kc= 180 for spherical and 300 for monoliths, why?……. a (macro) posority dependence: Kc() column ε (range) Spherical 0.5 (0.4-0.6) Monolithic 0.8 (0.7-0.9) N. Vervoort, P. Gzil, G.V. Baron and G. Desmet, Anal. Chem. 2003, 75, 843-850
modeling monoliths #2 plate height • H = A + B / u + C * u (omitting the Cs term) • A = 2 * γ * dp (obstruction factorγ = 0.6) • B = 2 * kD * Dm(packing factorkD = 0.4) • C = 1/96 * dp2 / Dm * (11k2 + 6k + 1)/(k + 1)2 • (get Dm from Wilke-Chang: solvent, , T and MW effects ) • (for convenience: dp = particle or macro pore diameter) • "a 2 m monolithic column behaves like a 4 m conventional" • So for monoliths: dp is replaced with 2 dp(same γ and kD values) Jennifer Houston Smith, thesis, Virginia Polytechnic Inst. & State Univ. Blacksburg,2002
Conventional column, 150 mm, 35°C, particle diameter 110 µm