110 likes | 254 Views
ICON Bucharest 2006 J.Steppeler, Ripodas, Th. Heinze, D. Majewski (DWD - German Weather Service, Offenbach, Germany) L. Bonaventura (MOX - Politecnico di Milano, Italy) M. A. Giorgetta (Max Planck Institute for Meteorology, Hamburg, Germany). Intro: Goals of the ICON project.
E N D
ICON Bucharest 2006J.Steppeler, Ripodas, Th. Heinze, D. Majewski (DWD - German Weather Service, Offenbach, Germany)L. Bonaventura (MOX - Politecnico di Milano, Italy)M. A. Giorgetta (Max Planck Institute for Meteorology, Hamburg, Germany)
Intro: Goals of the ICON project • New unified weather forecasting (DWD) and climate model (MPI-M). • Mass conservation + discr. continuity eq. = discr. transport eq. with c≡1 • Quasi uniform horizontal resolution icosahedral grids • Local grid refinement in one or more regions triangular cells • Global or regional domain • Hydrostatic, and non-hydrostatic • Ocean GCM using same grid and data structures and numerical operators
Intro: Main participants DWD: Deutscher Wetterdienst, Germany D. Majewski, Th. Heinze, P. Ripodas, B. Ritter, H. Frank, D. Liermann, U. Schättler, J. Steppeler MPI-M: Max-Planck-Institute for Meteorology, Germany E. Roeckner, M. Giorgetta, L. Kornblueh, U. Schulzweida, P. Korn, H.Wan MOX – Politecnico di Milano, Italy L. Bonaventura Others: W. Sawyer (ETH Zürich), P. Sanders (Uni Karlsruhe), D. Steurer (MPI-I, Saarbrücken), J. Baudisch (TU München) Discussions and/or joint work: R. Klein, F.X. Giraldo, J. Klemp, D. Randall, T. Ringler, H. Tomita
ICON main line • Grid structure based on Thuburn (1997) + optimization option (Heikes and Randall, 1995) • 2 conservation variants: • Mass and potential vorticity conservative scheme • Mass and energy conserving scheme • 2 or 3 time level semi-implicit time stepping ICON side line • Grid structure based on great circle grids • Uniform third order approximation • Easy incorporation of ordinary grid conceps and existing local models
GME: 3 time level ICOSWP: 2 time level
Local zooming option: grid generation > Lat-Lon region > Circular region > 3 refinement leves > 3 refinement levels
Rhomboidal divisions of the sphere NP=3 NP=4 NP=5 Cube 4-body Isocahedron
Bilinear grids • Four points r1,r2,r3,r4 may have any position in space • Divide the sides of the rhomboid equally and connect opposite points • Bilinear grid theorem: each coordinate line intersects each line of the crossing coordinate line family. The grid is regular in each direction.