180 likes | 316 Views
Generating Precise and Concise Procedure Summaries. Greta Yorsh Eran Yahav Satish Chandra. abstract domain & transformers. foo(…) { … }. summary of foo. Our Framework. Summary Generator. function from input to output abstract values. abstract domain & transformers. bar(…) {
E N D
Generating Precise and Concise Procedure Summaries Greta Yorsh Eran Yahav Satish Chandra
abstract domain & transformers foo(…) { … } summary of foo Our Framework Summary Generator function from input to output abstract values
abstract domain & transformers bar(…) { … foo(); … } summary of bar Our Framework Summary Generator summary of foo
abstract domain & transformers library Analyzer Our Framework (restricted) … Summary Generator client client client Summaries • precise • efficient • concise
(A1) tr12 (A2) tr23 tr13 (A3) Example • Composition of transformers tr13 tr12 tr23 class DataReader { FileComp f; ... void setComponent(FileComp p) { this.f = p; } FileComp getComponent() { return this.f; } ... void nop() { FileComp t; t = getComponent(); setComponent(t); } } A1: A2: A3:
… Main Challenge • Composition of transformers • Finite representation of iterated composition of transformers calling contexts loop iterations …
tr12 tr23 tr13 Our Approach • Express constraints on intermediate states in terms of initial and final states • Restrict the representation of transformers • covers all basic statements • closed under composition • finite language
Our Contributions • Framework for generating precise, efficient and concise summaries • language of transformers • composition algorithm • Instances of the framework include • known classes: IFDS, IDE • modular constant propagation with aliasing • modular typestate verification with aliasing • Prototype and evaluation for typestate
tr12 tr23 tr13 Key Ideas • Transformers are defined using conditional micro-transformers • partition values into finite number of classes with uniform behavior • compose using case-splitting • restrict the way partitions defined • e.g., no quantifiers • Lift to aggregate domains • powerset, product, union • transformers follow domain structure • dependencies between components
Simple Example: Tracking “Nullness” • Abstract value is a set of access paths • e.g., { x.f, y } must have null value • Abstract transformer tr operates pointwiseon individual access paths using trAP:tr(X) = X trAP() • Conditional micro-transformertrAP maps an access path to a set of access paths
{ this.f, t } if = this.f { } if = t { } if t this.f trAP() ≡ =this.f t this.f =this.f this.f t preconditions (under certain restrictions) Example: Conditional Micro-Transformer t = this.f
(A1) tr12 (A2) 12 tr12(X) = X trAP() tr23 tr13 23 tr23(X) = X trAP() (A3) 12 23 tr13(X) = X (trAP trAP )() Example: Composition Algorithm class DataReader { FileComp f; ... void setComponent(FileComp p) { this.f = p; } FileComp getComponent() { return this.f; } ... void nop() { FileComp t; t = getComponent(); setComponent(t); } } A1: A2: A3:
trAP 12 this.f t this.f t this.f t =t =t =t =t =t =t t t t this.f this.f this.f trAP 23 Example: Composition Algorithm t = getComponent(); setComponent(t) =this.f t this.f t = getComponent() =this.f this.f t substitution := :=this.f := t setComponent(t)
Example: Composition Algorithm t = getComponent(); setComponent(t) t this.f =this.f =this.f := :=t :=this.f this.f t tthis.f tt this.fthis.f this.f t =t this.f=t t=t =t t=t this.f=t t this.f t t this.f this.f t this.f tthis.f
t this.f =this.f =this.f this.f t t = getComponent(); setComponent(t) Example: Composition Algorithm t = getComponent(); setComponent(t) t this.f =this.f this.f t t=t t=t t this.f
=this.f t this.f t = getComponent() =this.f this.f t setComponent(t) this.f t =t =t t this.f t this.f =this.f t = getComponent(); setComponent(t) =this.f this.f t Basic Ingredients of Composition • Case splitting • Substitution • Consistency checking • Simplification • Invert operation (details in the paper)
Related Work • Static determination of dynamic properties of recursive procedures [Cousot-Cousot ’79] • Functional approach [Sharir-Pnueli ‘81] • IFDS problems [Reps-Horwitz-Sagiv POPL’95] • IDE problems [Sagiv-Reps-Horwitz TCS ‘96] • Relevant Context Inference [Chatterjee-Ryder-Landi POPL’99]
Summary • Language of transformers • Composition algorithm • The language is closed under composition • The language is expressive • Precise and concise procedure summaries