1 / 34

Ionization Sources - II

Ionization Sources - II. EI and CI have limitations Both require a volatile sample Samples must be thermally stable Neither lends itself to LC/MS analysis Other techniques have been developed FAB (Fast Atom Bombardment) MALDI (Matrix Assisted Laser Desorption) ESI (Electrospray)

eudora
Download Presentation

Ionization Sources - II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ionization Sources - II • EI and CI have limitations • Both require a volatile sample • Samples must be thermally stable • Neither lends itself to LC/MS analysis • Other techniques have been developed • FAB (Fast Atom Bombardment) • MALDI (Matrix Assisted Laser Desorption) • ESI (Electrospray) • APCI (Atmospheric Pressure CI)

  2. FAB • Sample is dissolved in a non-volatile liquid matrix • Glycerol and m-Nitrobenzyl alcohol are common matrices • A high energy (5kV) beam of neutral atoms (typically Ar or Xe) is focused onto the sample droplet • Dissolved Ions and Molecules are ejected into the gas phase for analysis

  3. FAB

  4. FAB • For Organic Molecules M+H and M+Na ions are typically observed • M+H ions typically fragment more than M+Na ions • Salts such as NaI can be added to the matrix to induce M+Na formation

  5. FAB (nanomole) Advantages • Stable Molecular Ion • High Mass Compounds (10,000 amu) • Thermally Labile Compounds (R.T.) • Disadvantages • No Fragment Library • Solubility in Matrix (MNBA, Glycerol) • Quantitation Difficult • Needs Highly Skilled Operator • Not amenable to automation • Relatively Low Sensitivity

  6. MALDIMatrix Assisted Laser Desorption • Sample dissolved in a solid matrix • Typically mixed in solution • Small droplet applied to target and dried • A wide variety of matrices exist • Choose based on hydrophobic/hydrophilic character of sample • Also based on laser absorbance (usually UV) • An ionization agent is often added • Agent must bind to the sample • TFA and its Na+ Ag+ salts are common

  7. MALDI

  8. MALDI • Choice of matrix based on empirical evidence • http://polymers.msel.nist.gov/maldirecipes/maldi.html • Typically singly charged ions observed • Some matrix adducts/cluster ions • Difficult to analyze low MW compounds due to matrix background • Typically used for MW 500-500,000

  9. MALDI

  10. MALDI

  11. Matrix Application Structure α-Cyano-4-hydroxycinnamic acid (CCA) peptides 3,5-Dimethoxy-4-hydroxycinnamic acid (sinapinic acid) proteins 2,5 Dihydroxybenzoic acid (DHB) peptides, proteins, polymers, sugars 3-Hydroxypicolinic acid (HPA) oligonucleotides Dithranol (anthralin) polymers UV-MALDI Matrices

  12. MALDI (low femtomole) Advantages • Parent Ion • High Mass Compounds (>100,000 amu) • Thermally Labile Compounds (R.T.) • Easy to Operate • Easily Automated • Disadvantages • No Fragment Library • Wide variety of matrices • Quantitation Difficult • Matrix Background

  13. ESIElectrospray Ionization • Sample dissolved in a polar solvent • Solution flows into a strong electric field (3-6 kV potential) • Electric field induces a spray of highly charged droplets (charges at surface) • As droplets shrink, repulsion increases until they break into smaller droplets • In small enough droplets, surface charges can be desorbed into the gas phase.

  14. ESI

  15. ESI • Ions formed via charge-residue or ion-evaporation • Molecules form M+H+ or M-H- ions • Large molecules: 1 charge / 1000 amu • Small molecules: Usually singly charged • Molecules with no acid/base groups • Can form adduct ions with Na+ K+ NH4+ Cl- OAc-, etc. • Salts may be added or already present in sample.

  16. ESI • ESI ions formed at high pressure must be transferred into high vacuum • Differential pumping is needed to move ions through small openings while maintaining low pressures • Ions become super-cooled by expansion. Solvent can recondense • Two methods to reduce cluster formation • High temperature transfer tube • Heated counter-current flow of N2

  17. ESI

  18. ESI

  19. ESI

  20. ESI-Multiply Charged Ions • Large Molecules produce an envelope of charge states • Deconvolution must be done to determine the charge states if isotopic resolution is not possible • Typically, MS data systems use software to deconvolute automatically

  21. ESI-Multiply Charged Ions M=16953 Δm = 1 amu ; ∆(m/z) ≈ 0.055; z = 18 ; Δ(m/z) ≈ 0.10 Δm = 1 amu z = 10

  22. j(m2-mp) z1 = M = z1(m1-mp) (m2-m1) ESI-Multiply Charged Ions • Consider (M+zH)z+ • z1m1 = M + z1mp (m1 = measured m/z) • Consider a peak of m/z=m2 which is (j-1) charge states away from peak m1 • m2(z1-j) = M + (z1-j)mp

  23. 10(1621.3-1.0073) j(m2-mp) = 51.0 z1 = z1 = (m2-m1) (1621.3-1303.8) ESI-Multiply Charged Ions j=10 1303.8 1621.3 M = z1(m1-mp) M = 51.0(1303.8-1.0073) M = 66485

  24. ESI-Multiply Charged Ions

  25. ESI (low femtomole to zeptomole) Advantages • Parent Ion • High Mass Compounds (>100,000 amu) • Thermally Labile Compounds (<0º C) • Easy to Operate • Interface to HPLC • Zeptomole sensitivity with nanospray • Disadvantages • No Fragmentation • Need Polar Sample • Need Solubility in Polar Solvent (MeOH, ACN, H2O, Acetone are best) • Sensitive to Salts • Supression

  26. APCIAtmospheric Pressure CI • Sample solution flows into a pneumatic nebulizer • Droplets of sample/solvent are vaporized in a quartz heater • Vapor passes by a region of corona discharge where electrons ionize N2 gas and solvent (protonated solvent molecules predominate) • Protonated solvent reacts with sample

  27. APCI

  28. APCI

  29. APCI

  30. APCI (high femtomole) Advantages • Parent Ion • Insensitive to Salts • Interface to HPLC • Can use Normal Phase Solvents • Handles High Flow Rates • Disadvantages • Need Volatile Sample • Need Thermal Stability

  31. Multimode • Most instruments use dedicated ESI and APCI sources • samples must be run twice to obtain both spectra • Some vendors offer sources which rapidly switch between ESI and APCI • duty cycle/sensitivity are lost, especially when coupled with fast chromatography • Agilent has developed a source which ionizes by ESI and APCI without switching

  32. Multimode

  33. Multimode

  34. Multimode

More Related