1 / 25

Improving Runtime and Memory Requirements in EDA Applications

Learn strategies to optimize memory use, reduce runtime, and enhance performance in EDA applications. Topics include network traversal, memory allocation, wave-front traversals, and memory footprint minimization.

Download Presentation

Improving Runtime and Memory Requirements in EDA Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Improving Runtime and Memory Requirements in EDA Applications Alan Mishchenko UC Berkeley

  2. Overview • Introduction • Topics • Network traversal • AIG package • SAT solver • BDD package • Memory management • Locality of computation • Conclusion

  3. Network Traversal • Optimizing node memory for DFS traversal • Storing fanins/fanouts in the node • Using traversal IDs • Using wave-front traversals • Minimizing memory footprint

  4. Memory Alloc In Topological Order • Optimize node memory for DFS traversal • Allocate memory from an array in a DFS order Primary outputs 8 7 3 6 1 2 5 4 Primary inputs

  5. Store Fanins/Fanouts in the Node • Embed the dynamic array into the node • Leads to direct pointing or storing integer IDs of the fanin/fanouts • In rare cases when memory reallocation is needed (<0.1% of nodes), use a new piece of memory to store extended array of fanins/fanouts struct Nwk_Obj_t_ { … int nFanins; // the number of fanins int nFanouts; // the number of fanouts int nFanioAlloc; // the number of allocated fanins/fanouts Nwk_Obj_t ** pFanio; // fanins/fanouts }; pObj = (Nwk_Obj_t *)Aig_MmFlexEntryFetch( sizeof(Nwk_Obj_t) + sizeof(Nwk_Obj_t *) * (nFanins + nFanouts + p->nFanioPlus) ); pObj->pFanio = (Nwk_Obj_t **)((char *)pObj + sizeof(Nwk_Obj_t));

  6. Traversal ID • Use a specialized integer data-member of the node to remember the number of the last traversal that visited this node void Nwk_ManDfs_rec( Nwk_Man_t * p, Nwk_Obj_t * pObj, Vec_Ptr_t * vNodes ) { if ( Nwk_ObjIsTravIdCurrent(p, pObj) ) return; Nwk_ObjSetTravIdCurrent(p, pObj); Nwk_ManDfs_rec( p, Nwk_ObjFanin0(pObj), vNodes ); Nwk_ManDfs_rec( p, Nwk_ObjFanin1(pObj), vNodes ); Vec_PtrPush( vNodes, pObj ); } Vec_Ptr_t * Nwk_ManDfs( Nwk_Man_t * p ) { Vec_Ptr_t * vNodes; Nwk_Obj_t * pObj; int i; Nwk_ManIncrementTravId( p ); vNodes = Vec_PtrAlloc(); Nwk_ManForEachPo( p, pObj, i ) Nwk_ManDfs_rec( p, pObj, vNodes ); return vNodes; }

  7. Wave-Front Traversals • Some applications use additional memory at each node • Examples: Simulation, cut enumeration, support computation • 1K per node for 1M nodes = 1Gb of additional memory! • Case study: Computing input supports of each output of the network • Used, for example, to compute (a) output partitioning, (b) register dependency matrix (A. Dasdan et al, “An experimental study of minimum mean cycle algorithms”, 1998) • Code: procedure Aig_ManSupports() in file “abc\src\aig\aig\aigPart.c” Wave-front Wave-front Wave-front At any time during traversal, a wave-front is the set of nodes such that: all fanins are already visited and at least one fanout is not yet visited. Additional memory is only needed for the nodes on the wave-front. For most industrial designs, wave-front is about 1% of all nodes (1Gb  10Mb).

  8. Minimizing Memory Footprint • When repeatedly traversing a large network, runtime is determined by memory pumped through the CPU (pointer chasing) • Examples when repeated traversal cannot be avoided • Sequential simulation of a network for many cycles • Computing maximum-network flow during retiming, etc • In such applications, it is better to develop a specialized, static, low-memory representation of the network • Reducing memory 2x may improve runtime 3-5x • Example: Most-forward retiming (code in “abc\src\aig\aig\aigRet.c”) • If repeated topological and reverse topological traversals are performed, it may be better to have two networks, each having memory allocated to facilitate each traversal order

  9. Implementation of AIG Package • Fixed amount of memory for each AIG node • Arbitrary fanout also uses fixed amount of memory per node! • Different memory configurations • Structural hashing • The only potentially non-cache-friendly operation • Tricks to speed up structural hashing • AIGER: Compact binary AIG representation format • Work of Armin Biere (Johannes Kepler University, Linz, Austria) • Available at http://fmv.jku.at/aiger

  10. 12 bytes (32b) / 12 bytes (64b) struct Gia_Obj_t_ { unsigned iDiff0 : 29; // the diff of the first fanin unsigned fCompl0: 1; // the complemented attribute unsigned fMark0 : 1; // first user-controlled mark unsigned fTerm : 1; // terminal node (CI/CO) unsigned iDiff1 : 29; // the diff of the second fanin unsigned fCompl1: 1; // the complemented attribute unsigned fMark1 : 1; // second user-controlled mark unsigned fPhase : 1; // value under 000 pattern unsigned Value; // application-specific value }; 36 bytes (32b) / 56 bytes (64b) struct Aig_Obj_t_ { Aig_Obj_t * pNext; // strashing table Aig_Obj_t * pFanin0; // fanin Aig_Obj_t * pFanin1; // fanin Aig_Obj_t * pHaig; // pointer to the HAIG node unsigned int Type : 3; // object type unsigned int fPhase : 1; // value under 00...0 pattern unsigned int fMarkA : 1; // multipurpose mask unsigned int fMarkB : 1; // multipurpose mask unsigned int nRefs : 26; // reference count unsigned Level : 24; // the topological level unsigned nCuts : 8; // the number of cuts int Id; // unique ID int TravId; // ID of the last traversal union { // temporary storage void * pData; int iData; float fData; }; }; AIG Node • ABC has several AIG packages • A low-memory package is used for simulation and equivalence checking • A more elaborate package is used for general AIG manipulation Observation: It is better to store node fanins as integer IDs rather than pointers.

  11. Fixed-Memory Fanout for AIGs • Solution (due to Satrajit Chatterjee): • Use 5 pointers (integers) for each node • One pointer (integer) contains the first fanout of the node • Other pointers (integers) are used to create two double-linked linked lists • Each list stores fanout representation of the corresponding fanin • Double-linked lists allow for constant-time addition/removal of node fanouts • Code in file “abc\src\aig\aig\aigFanout.c” a b c NULL NULL n n n n node first fanout } fanouts of the first fanin } fanouts of the second fanin fanins

  12. Structural Hashing • The only potentially non-cache-friendly AIG operation • Structural hashing is very valuable – but cannot avoid hashing • The standard hash-table is used, with nodes having the same hash key being linked into single-linked lists • The pointer to the next node is embedded in the AIG node • Tried the linear-probing hash-table without improvement • Trick to sometimes avoid hash-table look-up • When building a new node, do not look it up in the table if at least one of its fanins has reference counter 0

  13. AIGER • Uses ~3 bytes per AIG node, on average • 1M node AIG can be written into a 3Mb file • ~12x more compact than Verilog, BLIF, or BENCH • ~5x faster reading/writing for large files • Key observations used by AIGER • To represent a node, two integers (fanin literals) need to be represented • The fanin literals are often numerically close • Only the difference between them can be stored, which typically takes only one byte

  14. SAT Solver • A modern SAT solver (in particular, MiniSAT) is a treasure-trove of tricks for efficient implementation • To mentions just a few • Representing clauses as arrays of integers • Using signatures to check clause containment • Using two-literal watching scheme • etc

  15. SAT Solver (What’s Missing?) • Most of the modern SAT solvers are geared to solving hard problems, such as those encountered in SAT competitions (1 problem ~ 15 min) • This motivates elaborate data-structures and high memory usage • 64 bytes per variable; 16 bytes per clause; 4 bytes per literal • In ABC, runtime of several applications is dominated by SAT • SAT sweeping • Sequential SAT sweeping (register/signal correspondence) • Accumulation of structural choices • Computing don’t-cares in a window • The SAT problems solved in these applications have much in common • Incremental (each problem has +/- 10 AIG nodes, compared to the previous problem solved) • Relatively easy (less than 100 conflicts) • Numerous (10K-100K problems) • Based on these observations, a new efficient circuit-based SAT solver was developed (abc\src\aig\gia\giaCSat.c)

  16. Experimental Results (SAT)

  17. Experimental Results (CEC) CEC results for 8 hard industrial instances. Runtime in minutes on Intel Q9450 @ 2.66 Ghz. Time1 is “cec” in ABC809xx. Time2 is “&cec” in abc90329. Timeout is 1 hour. Less than 100 Mb of RAM was used in these experiments.

  18. Why MiniSAT Is Slower? • Requires multiple intermediate steps • Window  AIG  CNF  Solving • Instead of Window  Solving • Uses too much memory • Solver + CNF = 140 bytes / AIG node • Instead of 8-16 bytes / AIG node • Decision heuristics • Are not aware of the circuit structure • Instead of Using circuit information

  19. BDD Package • Similar to a SAT solver, a modern BDD package is a well-researched computation engine, which performs • Boolean function manipulation • Garbage collection • Dynamic variable reordering • etc • The usefulness of BDD package is limited since the arrival of AIGs (2000) and efficient SAT solvers (2001) • However, some applications still rely on BDDs (for example, exact reachability analysis) • This motivates building a better BDD package

  20. BDD Package (What’s Missing?) • How a modern BDD package can be improved? • Make it pointer-independent (!) • Leads to reproducible results across different runs / platforms • Improve CPU cache behavior by using 8 bytes per node • Present packages use 16 or 32 bytes (on a 32- or 64-bit computer) • Improve dynamic variable reordering • Currently, it is very slow (~1M BDD nodes takes ~5 min) • Apply variable reordering more frequently • Rather than wait to BDD to grow large followed by slow reordering • These and other ideas are currently being implemented

  21. Minimalistic BDD Data-Structure • Node representation • Node storage (8 bytes per node) • Next pointers (4 bytes per node) • Unique table (4 bytes per node) • Computed table (16 bytes per entry) • External referencing • Two relatively small arrays of integers • Variable / Level mapping • Two relatively small arrays of integers • Dynamic variable reordering • Temporary storage for nodes (8 bytes per node) • Temporary reference counters (4 bytes per node) • Temporary marks (1 bit per node)

  22. BDD Node Representation struct Bdd_Node_t // 64 bits = 8 bytes { unsigned f0 : 24; // negative cofactor unsigned c0 : 1; // complemented attribute of negative cofactor unsigned f1 : 24; // positive cofactor unsigned lev : 15; // level }; • This node structure is optimized for frequent traversals • Allows for building BDDs with ~32K variables and ~16M nodes

  23. Custom Memory Management • Three types of memory managers in ABC • Fixed-size • Allocates/recycles entries of a fixed size • Used for AIG nodes • Flexible-size • Allocates (but does not recycle) entries of variable size • Used for signal names • Step-size • Steps are degrees of 2 (4-8-16-32-etc) in bytes • Use for CNF clauses in the customized version of MiniSat • Code in package “abc\src\aig\mem”

  24. Locality of Computation • To improve speed • Use less memory • Make transformations local • Use contiguous data-structures • Case study: BDDs vs. truth tables (TTs) • In the past: “BDDs are present-day truth tables” • These days: “Truth tables are present-day BDDs” • Advantages of TTs • Computation is more local • Memory usage is predictable • For functions up to 16 vars, TTs lead to faster computation • ISOP, DSD, matching, decomposition, etc • Limitations of TTs • Does not work for more than 16 variables • Some operations are faster using BDDs, even for functions with 10 variables • E.g. cofactor satisfy counting

  25. Conclusion • Lessons learned while developing ABC • Topics considered • Network traversal • AIG representation • SAT solving • Memory management • Locality of computation • Locality of computation is important • Allows for efficient control of the resources • Leads to scalability and parallelism

More Related