230 likes | 592 Views
New developments in the study of seismic anisotropy from shear-wave splitting analyses G . Rümpker Goethe-University Frankfurt AlpArray – s wath -meeting Potsdam, 18.7.2013. Alps – previous studies and interpretations SKS splitting < seismic anisotropy > mantle flow hypothesis :
E N D
New developments in the study of seismic anisotropy from shear-wave splitting analyses G. Rümpker Goethe-University Frankfurt AlpArray – swath-meeting Potsdam, 18.7.2013
Alps – previousstudiesandinterpretations • SKS splitting < seismicanisotropy> mantleflow • hypothesis: • fast polarization || mantleflow • thepossibleroleofcrustalanisotropy • - howtodiscriminatebetweencrustalandmantleanisotropy? • recentobservations: • - fast polarization|| topography • examples/casestudies: South America (Andes), Iran • - anisotropicwaveformmodeling • - receiver-functionsplitting
Seismic Anisotropy - SKS-Splitting • “2 splitting parameters“ • : polarisation direction of fast shear wave LP orientation of olivine or magmatic lenses • t: delay time extent/strength of anisotropy
datacoverage – whatcanweexpect? Walther 2012: 1979-2009: 6,320 potential SKS events (M> 5.5, D>90° ) 240 useful SKS events – 8 per year !
Global shear-wave splitting database http://www.gm.univ-montp2.fr/splitting/DB/ • Wüstefeld, A.; Bokelmann, G. H. R.; Barruol, G.; Montagner, J.-P. (2009)
Alps: shear-wave splitting results • Barruol, G., Deschamps, A. and Coutant, O. (2004), Tectonophysics • Kummerow, J.; Kind, R. (2006), Tectonophysics • Barruol, G., Bonnin, M., Pedersen, H., Bokelmann, G.H.R. & Tiberi, C. (2011), EPSL
Kummerow & Kind (2006) • Delay times: 0.8 s - 2.0 s • Fast-axis directions: 60° - 70° N (coincide with the trend of the Eastern Alps) • Interpretation: Orogen-parallel flow in the upper mantle; escape movement triggered by Adriatic indenter DX=6 km
Barruol et al. (2004) • Delay times: 1.0 - 1.5 s, 2.0 s • Fast-axis directions: WNW–ESE in the Nice area and progressively rotating to NW–SE and to NS for stations located further North • Interpretation: large asthenospheric flow induced by the rotation of the Corsica–Sardinia lithospheric block and the retreat of the Apenninicslab
Barruol et al. (2011) • Delay times: maximum anisotropy magnitude is not located beneath the internal zones of the belt but instead beneath external units. • Fast-axis directions: characterized by fast split directions that closely follow the trend of the belt. • Interpretation: All suggests that the anisotropy is likely dominated by sublithospheric mantle deformation. They propose that the observed anisotropy pattern can be explained by recent or active mantle flow around the Eurasian slab.
Russo & Silver (Science, 1994) Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy
Shear-wavesplittingobervations (Wölbern et al., EPSL submitted) ReFuCa project DX=20 km (!)
Localshear-wavesplittingobervations andshear-zones
Waveformmodelling comparsionofsyntheticandobservedwaveformeffects • 2D Finite-differencemethod • anisotropicelastictensor • finite-frequencyeffects
Ps – splitting - crust
Preliminaryconclusions • Alps: currentanisotropy/mantle-flowmodelsarebased on • insufficientdepthresolution • simplifiedassumptions on therelationshipbetweenflowand fast directions • New toolstodiscriminatebetweencrustalandmantleanisotropyareavailable (Waveformmodeling, Ps-splitting) • Andes: Waveformmodellingprovidesevidenceforsignificantcontributionofcrustalanisotropyto SKS splittingobservations • The relationbetweenanisotropyandmantleflowcanbeclarifiedbygeodynamicmodeling(e.g. Kaminski & Ribe 2002)