230 likes | 770 Views
Calculations of phase diagrams using Thermo-Calc software package. Content. Equilibrium calculation using the Gibbs energy minimisation 1. The Gibbs energy for a system 2. The Gibbs energy for a phase.
E N D
Calculations of phase diagrams using Thermo-Calc software package Content Equilibrium calculation using the Gibbs energy minimisation 1. The Gibbs energy for a system 2. The Gibbs energy for a phase Unary system: Sn (calculation of melting temperature, plotting thermodynamic functions) Phase diagram for the Sn-Bi system (Temperature - Composition) Calculation of invariant reaction (T, phase compositions, enthalpy) Calculation of thermodynamic properties of liquid phase Calculation of phase fraction diagram for Bi concentration 5, 25 and 43 mol.% Scheil solidification simulation for Sn-Bi alloys • Calculation of phase diagram for Fe-C system • Stable diagram • 2. Metastable diagram
The Gibbs for a system and for a phase 1+3+5: G135=n1G1+n3G3+n5G5 1+2+4: G124=n1G1+n2G2+n4G4 1+3+4: G134=n1G1+n3G3+n4G4 2+4+5: G245=n2G2+n4G4+n5G5 2+4+6: G246=n2G2+n4G4+n6G6 2+3+5: G235=n2G2+n3G3+n5G5 3+4+6: G346=n3G3+n4G4+n6G6 3+5+6: G356=n3G3+n5G5+n6G6
Property diagrams for unary system (Sn) Tm=505 K (232°C) L=Sn-Bct DHtr=-7.029 kJ/mol
Calculation of enthalpy (DH) of reaction 1Liq=a(Sn)+b(Bi) c Stoichiometric coefficients a and b of invariant reaction are calculated by lever rule b a c=(X(Bi)-X(Sn)) a=(X(Bi)-XLiq)/c b=(XLiq-X(Sn))/c X(Sn) XLiq X(Bi) DH(Tinv)=aDH(Sn)+bDH(Bi)-DHLiq DH(412K)=-7.717 kJ/mol-at.
Calculation of thermodynamic properties of liquid phase Thermodynamic functions of mixing (enthalpy, entropy, Gibbs energy) in Liquid phase at 300°C Activity of Bi and Sn in Liqiud phase at 300°C
Phase fraction diagrams I II III I II III
Scheil solidification simulation Nonequilibrium solidification of Cu-Ni alloy D.R. Askeland, P.P. Phule „The science and engineering of materials“ p. 370 ξ(liq)n – fraction of liquid calculated by lever rule at Tn
Phase relations in the Fe-C system Fig.1. Stable diagram Fig. 2. Metastable diagram