1 / 12

Module C5

Module C5. Reorder Point/Service Levels. DETERMINING A REORDER POINT, r* (Without Safety Stock). Suppose lead time is 8 working days The company operates 260 days per year r* = LD where L and D are in the same time units L = 8/260  .0308 yrs D = 6240 /year r* = .0308(6240)  192

fancy
Download Presentation

Module C5

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Module C5 Reorder Point/Service Levels

  2. DETERMINING A REORDER POINT, r* (Without Safety Stock) • Suppose lead time is 8 working days • The company operates 260 days per year • r* = LD where L and D are in the same time units • L = 8/260  .0308 yrs D = 6240 /year r* = .0308(6240)  192 OR, L = 8 days; D/day = 6240/260 = 24 r* = 8(24) = 192

  3. DETERMINING A REORDER POINT, r* (With Safety Stock) • Suppose lead time is 8 working days • The company operates 260 days per year • r* = LD + SS • Suppose a safety stock of SS = 13 is desired • L = 8/260  .0308 yrs D = 6240 /year r* = .0308(6240) +13  192 +13 = 205

  4. Actual Demand Distribution • Suppose on a short term basis demand actually more closely follows a normal distribution with: • Weekly mean demand W • Weekly variance 2W, Weekly St’d dev. W, • Demand over an n-week period: • normal • Mean nW_ • Variance = n2W, St’d Dev. = (n) W

  5. Calculating Q* • Over the course of a year, the standard deviation becomes small relative to the mean value -- hence a common practice is to ignore any variability and calculate Q* by the usual EOQ formula

  6. Lead Time Demand • Lead times, however, tend to be short and hence variability must be considered. • A cycle service level is supplied to the modeler -- the probability of not running out of stock during the lead time period. • Suppose lead time is L weeks • Demand during lead time is normal • Mean demand = L = LW • St’d dev. = L = L W

  7. Example -- Allen Appliance • Suppose we can assume that demand follows a normal distribution • This can be checked by a “goodness of fit” test • From our data, over the course of a week, W, we can approximate W by (105 + … + 130)/10 = 120 • W2  sW2 = ((1052 +…+1302) - 10(120)2)/9  83.33

  8. DEMAND DISTRIBUTION DURING 8 -DAY LEAD TIME • Normal • 8 days = 8/5 = 1.6 weeks, so • L = (1.6)(120) = 192 • L2  (1.6)(83.33) = 133.33 _____ • L 133.33 = 11.55

  9. .01 X Z SAFETY STOCK • Suppose we wish a cycle service level of 99% • WE wish NOT to run out of stock in 99% of our inventory cycles L = 11.55 ? 192 0 Z.01 = 2.33

  10. Calculating r* and Safety Stock Costs • Reorder point, r* = L + z.01 L= 192 + 2.33(11.55)  219 • Safety stock SS = 2.33(11.55) = 27 • Safety stock cost = ChSS = 1.40(27) = $37.80 This should be added to the TOTAL ANNUAL COST

  11. Reorder Point Enter Lead Time Information Select Cycle Service Level Worksheet Using the Template

  12. Module C5 Review • In the short run, demand may seem to follow a probability distribution (normal) • In the long term, variability is relatively insignificant in magnitude compared to the mean value-- so calculate Q* in usual way. • Determine a cycle service level = 1-  • Determine the mean and st’d deviation for demand during lead time • SS = zL r* = L + SS • Safety Stock Costs = ChSS -- add to total cost • Use of Template

More Related