1.35k likes | 2.48k Views
Geothermal Energy for Everyone. Pre-Workshop Course Bandung, 5 Maret 2012. Schedule. 08.00 – 12.00 : Geothermal System Geothermal Exploration 13.00 – 17.00 : Geothermal Production and Utilization Environmental Aspects Geothermal Economics. Introduction. Bumi. Bumi.
E N D
Geothermal Energy for Everyone Pre-Workshop Course Bandung, 5 Maret 2012
Schedule 08.00 – 12.00 : Geothermal System Geothermal Exploration 13.00 – 17.00 : Geothermal Production and Utilization Environmental Aspects Geothermal Economics
Bumi Struktur Bumidan Gradien Geotermal 30oC/km GradienTemperatur Rata-rata 1oC/km Temperatur (oC) Jari-jari (km)
Definition • Geothermal system : A general term that describes natural heat transfer within a confined volume of the Earth’s crust where heat is transported from a heat source to a heat sink usually the free surface (Hochstein & Browne, 2000). • Heat transfer : • Conduction • Convection • Radiation
Air permukaan Air permukaan
Geothermal System (Goff & Janik, 2000) • Sistemhot dry rock yang memanfaatkanpanas yang tersimpandalambatuanberporositasrendahdantidakpermeabel. Temperatursisteminiberkisarantara 120 hingga 225°C dengankedalaman 2 hingga 4 km). • Sistemmagma tap yang memanfaatkanpanas yang keluardaritubuh magma dangkal. Padasistemini, magma merupakanbentuk paling murnipanasalamiah yang mempunyaitemperatur<1200°C
Geothermal System • Sistem yang berasosiasidenganvolkanismeKuarterdanintrusi magma. Sisteminiumumnyamempunyaitemperatur<370°C dankedalaman reservoir <1,5 km. • Sistem yang berhubungandengantektonik, yaituterjadidilingkunganbackarc, zonakolisidansepanjangzonasesar. Sistemini yang telahdieksploitasiumumnyamempunyaitemperatur reservoir <250°C dankedalaman>1,5 km. • Sistem (yang dipengaruhioleh) geopressureditemukandicekungansedimen. Kedalaman reservoir sisteminiumumnya 1,5 hingga 3 km dantemperatur reservoir berkisardari 50 hingga 190°C.
Hydrothermal System • Hydrothermal system : A type of geothermal system where heat transfers from a heat source to the surface by free convection, involving meteoricfluids with or without traces of magmatic fluids (Hochstein & Browne, 2000). • A hydrothermal system consists of : • a heat source, • a reservoir with thermal fluids, • a surrounding recharge, and • a (heat) discharge area at the surface with manifestation.
Daerah resapan Daerah resapan Manifestasidi permukaan Sumurpanas bumi Reservoir Sumber panas (IGA, 2004) Schematic representation of an ideal hydrothermal system. A hydrothermal system can be described schematically as 'convecting water in the upper crust of the Earth, which, in a confined space, transfers heat from a heat source to a heat sink, usually the free surface' (Hochstein, 1990). It is made up of three main elements: a heat source, a reservoir and a fluid, which is the carrier that transfers the heat (IGA, 2004).
Definition • Volcanic system : A type of geothermal system where heat and mass transfers from an igneous body (usually a magma chamber) to the surface involving convection of magmatic fluids; meteoric fluids are not involved in the heat transfer process or are minor (Hochstein & Browne, 2000). • Volcanic-Hydrothermal system : A combination of a hydrothermal and a volcanic systems, where ascending magmatic (primary) fluids commonly mix with meteoric (secondary) fluids (rarely sea water); also called a magmatic-hydrothermal system.
Volcanic-Hydrothermal System Lawless (2008)
Indonesia mempunyaipotensipanasbumisebesar29GW atau sekitar 40% potensi dunia yang kebanyakan berasosiasi dengan gunung api strato (topografi tinggi). Smitsonian Natural Museum of History: Volcanoes of Indonesia
Geothermal in Indonesia Total potential: 29,038 MW at 276 fields Resources: 13171 MW and Reserves: 15867 MW Installed capacity: 1196 MWe Non volcanic system
Volcanic-Hydrohermal System in Java - Bali Hochstein & Sudarman (2008)
Volcanic-Hydrohermal Systems in Sumatra Hochstein & Sudarman (2008)
Other Hydrothermal System Berdasarkan : • Sumber panas • Temperatur (entalpi) reservoir • Fluida reservoir • dll
Temperatur Reservoir Hochstein (1990)
Hal-hal yang perlu diperhatikan: • Heat source : depending on geological setting, the most favourable is large, long lived hdrothermal systems age • Host rock: can be any type, most often volcanic, carbonate rocks may give problems permeability • Size: generally 1 to 5 km2 (upflow), can be as long as 20 km (outflow) resources • Fluids: mainly meteoric, dilute brine (~1/10 salinity of sea water), near-neutral pH, with dissolved gas of CO2(+H2S) resources/reserve & production
Boiling • Pemisahan 2 fasa fluida: • Air • Uap • Disertai dengan pemisahan: • Unsur terlarut, termasuk gas • Entalpi (panas yang disimpan) • Pada sistem panas bumi terjadi di kedalaman < 2 km
Boiling Point Depth (BPD) 250oC (Haas, 1971)
Boiling and Condensation (Lawless, 2008)
Fluida Hidrotermal Reservoir water, 1,000-10,000 mg/kg Cl, neutral pH, trace of CO2 & H2S, SiO2 rich. Magmatic fluid, strong acid Steam heated, near surface water, pH of acid to near neutral
Air Klorida (Cl) • Menunjukkanair reservoir • Mengandung 0,1 hingga 1,0 wt.% Cl • PerbandinganCl/SO4umumnyatinggi • Mengandungkationutama : Na, K, Ca dan Mg • Berasosiasidengan gas CO2dan H2S • pH sekitarnetral, dapatsedikitasamdanbasatergantung CO2terlarut • Sangatjernih, warnabirupadamataair natural • Kaya SiO2danseringterdapat HCO3- • Terbentukendapanpermukaansinter silika (SiO2)
Air Sulfat (SO4) • Akibatkondensasiuap air kedalam air permukaan (steam heated water) • SO4tinggi (mencapai 1000 ppm) akibatoksidasi H2S dizonaoksidasidanmenghasilkan H2SO4 (H2S + O2 = H2SO4) • MengandungbeberapappmCl • Bersifatasam • Ditunjukkandengankenampakankolamlumpurdanpelarutanbatuansekitar • Di lingkungangunungapi : air asam SO4-Cl terbentukakibatkondensasiunsurvolatilmagmatikmenjadifasacair
Air Sulfat - Klorida (SO4– Cl) Ta: Taal Ku: Kusatsu Shirane Kb: Kaba Tin, Tam: Kelimutu Ij: Ijen Po: Poas Ma: Maly Semiachik Pu: Kawah Putih Dem: Dempo Sv: Soufrière St.Vincent Qu: Quilotoa Kel: Kelud Sa: Segara Anak Ny, Mo: Nyos, Monoun The discharge of magmatic gases (SO2, H2S, HCl and HF) into a crater lake frequently lead to highly acidic sulfate-chloride waters. The lakes are too acidic to convert and store CO2 gas as bicarbonate ions (HCO3-).
Air Bikarbonat (HCO3) • Terbentukpadadaerahpinggirdandangkalsistemgeotermal • Akibatadsorbsi gas CO2dankondensasiuap air kedalam air tanah (steam heated water) • RendahCldan SO4bervariasi • Di bawahmuka air tanahbersifatasamlemah, tetapidapatbersifatbasaolehhilangnya CO2terlarutdipermukaan • Di permukaandapatmembentukendapan sinter travertin (CaCO3)
Fluida dan Permeabilitas • Lawless in WPRB Geothermal Lectures 2008
Umur Fluida dan Sistem Panas Bumi • Residensi air: ~10.000 tahun • Umumnya 100 – 1.000 tahun • Dapat 20.000 – 40.000 tahun • Umur sistem panas bumi: 200.000 tahun (Kawerau, NZ), umumnya ~2.000 – 500.000 tahun
KemunculanManifestasiDipengaruhi: Parameter-parameter fluidapanasbumi (e.g. densitas, viskositas, temperatur, tipe, dll). Parameter-parameter reservoar (e.g. permeabilitas, polaaliran, dll). Proses-prosespadafluidapanasbumi yang terjadidibawahpermukaan (e.g. pencampurandengan air dingin, boiling, kondensasi). Total panas yang adadireservoar.