320 likes | 523 Views
Gas Fraction Control System for a Gas Evolving Electrochemical Reactor. Craig E. Nelson - Consultant Engineer. Reactor Controller Functional Diagram. Cathodic (“Negative”) current. Electric “Eyes”. Standby. Standby Current Source. Bubble. Set Point. Counter – Anode – Ec – Red. +.
E N D
Gas Fraction Control System for a Gas Evolving Electrochemical Reactor Craig E. Nelson - Consultant Engineer
Reactor Controller Functional Diagram Cathodic (“Negative”) current Electric “Eyes” Standby Standby Current Source Bubble Set Point Counter – Anode – Ec – Red + Voltage Controlled Power Supply Loop Dynamics Circuit - Working – Cathode – Ew Blue-Green Parameter Extraction Circuit Sensor Support Circuit Block Diagram for “Bubbleostatic” Operating Mode
Reactor Control System Block Diagram Current Drivers Power Supply Detection Parameter Extraction Standby Current Source I2 Standby Bubble Detector Support Circuit Voltage Controlled Current Source V1 Parameter Extraction Circuit V2 V3 V4 V5 I1 Signal Smoothing Circuit Loop Dynamics Circuit Controller Set point Iout Det1 Det2 Photons “PID” Loop Dynamics
Requirements - Loop Dynamics • Controller should provide at least a second order transfer function • Controller should provide easy adjustability of the transfer function dynamics
Concept 1 – Absolute Amplitude Feedback Vout Integrate Input scaling and offset Output scaling and offset V1 V4 V5 Amplify Differentiate Vin Set point “PID” Dynamics
Parameter Extraction • Accept signals from one or more concentration sensing sources • Pre-process the sensor signal as required • Extract various parameters from the concentration sensor as required • 4. Scale and offset the parameter signals as required
Cross Comparison – Bubbleogram vs. Current Noise - Waveforms
Waveforms Bubbleogram Current Noise
Cross Comparison – Bubbleogram vs. Current Noise – Power Spectral Density
Power Spectral Density Bubbleogram Current Noise
Cross Comparison – Bubbleogram vs. Current Noise – Autocorrelation
Autocorrelation Bubbleogram Current Noise
Concept 1 – Absolute Amplitude Feedback Input scaling and offset V1 V2 Signal Smoothing Absolute Value Vout Vin
Concept 2 – Detrended Abs Amplitude Feedback mean(V2i …V2i+N) V2 = median(V1i … V1i+N) V3 Mean Estimator BUset Bubbles In BLset Var(V2i …V2i+N) V4 V1 V2 V5 = 1 if (V4 > BUset) Variance Estimator + LP Filter Boundary Alarm Generator Bubble Detector Detrender V6 = 1 if (V4 < BLset) V5 V6 V7 = Pu if (V5 =1) Integrator Preset V1 V2 V8 = Pl if (V6 =1) V7 V8 Median Filter Vset V9 V10 Integrator Cell Driver med(V2i …V2i+N) Vout
Concept 2 – Bubble Rate Feedback Input scaling and offset V1 V2 Differentiator and Limiting Amplifier Pulse Rate to Amplitude Converter Vout Vin
Cell Driver – Block Diagram Standby Mode Select DC Power Vin Cell Driver Power Amplifier V1 V3 V4 V6 Vout - Iout Current Sensor Input scaling V8 V2 V5 Standby Controller Cell Driver Feedback Network V7 Standby Current Set point Current Monitor
Summary and Conclusions A system concept has been developed and presented A parameter extraction strategy has been presented These methods can be used to extract gas fraction information from gas bubble sensing devices