1 / 82

Prof. Qing Wang

Lecture-03. Lecture Notes: Data Structures and Algorithms. Chapter 3 Linear List (Sequential List). Prof. Qing Wang. Table of Contents. Arrays and ADTs of Array 1D array ADT of array 2D and high dimensional arrays Sequential List ADT of sequential list Applications

fergal
Download Presentation

Prof. Qing Wang

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture-03 Lecture Notes: Data Structures and Algorithms Chapter 3 Linear List (Sequential List) Prof. Qing Wang

  2. Table of Contents • Arrays and ADTs of Array • 1D array • ADT of array • 2D and high dimensional arrays • Sequential List • ADT of sequential list • Applications • Polynomial ADT and Representation • Polynomial ADT • Sequential Representation of PolyN • Addition of Polynomial Prof. Q.Wang

  3. 3.1 Arrays and ADTs • One dimensional array • An example Prof. Q.Wang

  4. Arrays and ADTs • Characteristics of one dimensional array • In contiguous storage, also called as Vector • Except the first element of an array, other elements have and only have one predecessor • Except the last element of the array, other elements have and only have one successor First element Last element Prof. Q.Wang

  5. ADT of 1D Array (Class Definition) #include <iostream.h> #include <stdlib.h> template <class Type> class Array { private: Type*elements;//Space to store array int ArraySize;// Length of array void getArray ( );// Initialization of storage for array public: Array( int Size=DefaultSize );// Constructor Array( constArray<Type>& x );// Constructor (copy) Prof. Q.Wang

  6. ~Array( ) { delete [ ]elements;} //Deconstructor Array <Type> &operator= // Array duplication ( constArray <Type> & A); Type& operator [ ] ( inti ); // Get the element of the array Type* operator ( )const// Conversion of thepointers { return elements; } intLength ( ) const// Get the length of array { return ArraySize; } voidReSize ( intsz ); // Enlarge the size of the array } Prof. Q.Wang

  7. Implementation of Methods for 1D ArrayMemory allocation template <class Type> voidArray <Type>::getArray ( ) { // Private Function: Allocate the space for the array elements = new Type[ArraySize]; if ( elements == 0 ) { arraySize = 0; cerr << "Memory Allocation Error" << endl; return; } } Prof. Q.Wang

  8. Implementation of Methods for 1D ArrayConstructor template <class Type> Array <Type>::Array ( int sz ) { // Constructor Function of Array ADT if ( sz <= 0 ) { arraySize = 0; cerr << “Invalid size of array!” <<endl; return; } ArraySize = sz; getArray ( ); } Prof. Q.Wang

  9. Implementation of Methods for 1D Array Copy Constructor template <class Type> Array<Type>:: Array ( constArray<Type>& x ) { // Constructor Function (with copy) of Array ADT int n = ArraySize = x.ArraySize; elements = new Type[n]; if ( elements == 0 ) { arraySize = 0; cerr<< “Error of Memory Allocation” << endl; return; } Type *srcptr = x.elements; Type*destptr = elements; while( n-- ) * destptr++ = * srcptr++; } Prof. Q.Wang

  10. Implementation of Methods for 1D Arrayoperator [] template <class Type> Type & Array<Type>::operator [ ] ( int i ) { // Get the i-th element of array of Array ADT if ( i < 0|| i > ArraySize-1 ) { cerr << “The i is exceed the bound of the array” <<endl; return NULL; } return element[i]; } Prof. Q.Wang

  11. Implementation of Methods for 1D ArrayResize template <class Type> voidArray<Type>::Resize (intsz) { if ( sz >= 0 &&sz != ArraySize ) { Type * newarray =new Type[sz]; if ( newarray == 0 ) { cerr<< “Error of Memory Allocation” <<endl; return; } int n = ( sz <= ArraySize ) ? sz : ArraySize; Prof. Q.Wang

  12. 2D Array Type*srcptr = elements; Type *destptr = newarray; while ( n-- ) * destptr++ = * srcptr++; delete [ ] elements; elements = newarray; ArraySize = sz; } } Prof. Q.Wang

  13. 2D Array Row subscript i, Column subscript j Prof. Q.Wang

  14. 3D Array Page subscript i, Row subscript j, Column subscript k Prof. Q.Wang

  15. Sequential Storage of Arrays • 1D array LOC ( i ) = LOC ( i -1 ) + l =α+ i*l Prof. Q.Wang

  16. Sequential Storage of Arrays • 2D array Row-first: LOC ( j, k ) = a + ( j * m + k ) * l Prof. Q.Wang

  17. Sequential List Sequential Storage of Arrays • N-D array • The dimensions are m1, m2, m3, …, mn • The element with subscripts (i1, i2, i3, …, in) is in the space: LOC ( i1, i2, …, in ) = a + ( i1*m2*m3*…*mn + i2*m3*m4*…*mn+ + ……+ in-1*mn + in) * l Prof. Q.Wang

  18. 3.2 Sequential List (Sequence) • Definition and Property of Sequential List • Definition: A list is a finite, ordered sequence of data items (a1, a2, …, an) wherea1 is the item or element of list , nis the length of the list • Property: sequential access (put and get) • Important concept: List element has a position. • Traversal: • from the first to the last • from the last to the first • from the intermediate position to the head or the end Prof. Q.Wang

  19. ADT of Sequential List (Class Definition) template <class Type> classSeqList { private: Type *data; // Array to store the sequential list int MaxSize; // Maximize the size of list intlast; // Length of the list public: SeqList ( int MaxSize = defaultSize ); ~SeqList ( ){ delete [ ] data; } int Length ( )const{ returnlast+1;} int Find ( Type& x ) const; Prof. Q.Wang

  20. int IsIn ( Type& x ); intInsert ( Type & x, inti ); intRemove ( Type& x ); int Next ( Type& x ) ; int Prior ( Type& x ) ; int IsEmpty ( ){ returnlast ==-1;} intIsFull ( ){ return last == MaxSize-1;} TypeGet (int i ) { returni < 0|| i > last?NULL:data[i]; } } Prof. Q.Wang

  21. Find Implementation of Methods for Sequential List template <class Type> SeqList<Type> :: SeqList ( int sz ) { // Constructor Function if ( sz > 0 ){ MaxSize = sz; last = -1; data = new Type[MaxSize]; if ( data == NULL ) { MaxSize = 0; last = -1; return; } } } Prof. Q.Wang

  22. Implementation of Methods for Sequential List template <class Type> intSeqList<Type>::Find ( Type& x ) const { // Searching Function: try to find out the position of x int i = 0; while( i <= last && data[i]!= x ) i++; if ( i > last ) return-1; else return i; } Prof. Q.Wang

  23. Details of Searching in the List Prof. Q.Wang

  24. Insert element Complexity Analysis of Searching • If success Average Comparison Number (ACN) is • If fail to search x, Actual comparison number is n Prof. Q.Wang

  25. Insert an item into the List • Average Move Number (AMN) is Prof. Q.Wang

  26. Remove element Insert an item into the List template <class Type> intSeqList<Type>::Insert (Type& x,inti ){ // Insert a new item with (x) before pos i in the list if ( i < 0||i > last+1||last == MaxSize-1 ) return 0; // Fail to insert else { last++; for (int j = last; j > i; j--) // Move elements data[j] = data[j -1]; data[i] = x; return 1; // Success to insert } } Prof. Q.Wang

  27. Remove an item from the List • Average Move Number (AMN) is Prof. Q.Wang

  28. Application Remove an item from the List template <class Type> intSeqList<Type>::Remove (Type& x ) { // Remove existed item x from the list inti = Find (x); // Search x in the list if ( i >= 0) { last--; for ( int j = i; j <= last; j++ ) data[j] = data[j+1]; // Move elements return 1; // Success to remove x } return 0; // No removal if no item x } Prof. Q.Wang

  29. Application of Sequential List (1) • Union of two sets b2 a2 b1 a1 bm an bi ai a1, a2, …,ai… an, b1, b2, …, bi… bm, Insert N Get an item bi Get another item Y Prof. Q.Wang

  30. Union of two sets template <class Type> voidUnion ( SeqList<Type>& LA, SeqList<Type>& LB ) { int n = LA.Length ( ); int m = LB.Length ( ); for ( int i = 1; i <= m; i++ ) { Type x = LB.Get(i); // Get an item x from Set LB int k = LA.Find (x); // Search x in Set LA if ( k ==-1 ) // if not found, insert x into LA { LA.Insert (x, n+1); n++; } } } Prof. Q.Wang

  31. Application of Sequential List (2) • Intersection of two sets b2 a2 b1 a1 bm an bi ai Remove from A a1, a2, …,ai… an, Y Get an item ai Get another item N Prof. Q.Wang

  32. Intersection of two sets template <class Type> void Intersection ( SeqList<Type>& LA, SeqList<Type>& LB ) { int n = LA.Length ( ); int m = LB.Length ( ); int i = 0; while ( i < n ) { Type x = LA.Get (i); // Get an item x from LA int k = LB.Find (x); // Search x in Set LB if ( k ==-1 ) { LA.Remove (i); n--; } else i++; // if not found, remove x from LA } } Prof. Q.Wang

  33. Application of Sequential List (3) • Merge two sorted lists into a new list and the new one is also sorted as before. i LA= (3, 5, 8, 11) LB= (2, 6, 8, 9, 11, 15, 20) j LC= (2, 3, 5, 6, 8, 8, 9, 11, 11, 15, 20) Merge k Prof. Q.Wang

  34. Application of Sequential List (3) • Implementation template <class Type> SeqList &Merge_List ( SeqList <Type>& LA, SeqList <Type>& LB ) { int n = LA.Length ( ); int m = LB.Length ( ); SeqList LC(m+n); int i=j=k=0; while ( i < n && j<m) { Type x = LA.Get (i); // Get an item x from LA Type y = LB.Get (j); // Get an item y from LB Prof. Q.Wang

  35. if (x <= y ) { LC.Insert (k, x); i++; k++;}// Insert x into LC else { LC.Insert (k, y); j++; k++;} } while ( i < n) { // Insert the remains of LA into LC Type x = LA.Get (i); LC.Insert (k, x); i++; k++; } while (j<m) { // Insert the remains of LB into LC Type y = LB.Get (j); LC.Insert (k, y); j++; k++; } return LC; } Prof. Q.Wang

  36. 3.3 Polynomial • N-order polynomial Pn(x)hasn+1items。 • Coefficients: a0, a1, a2, …, an • Exponentials: 0, 1, 2, …, n。 ascending Prof. Q.Wang

  37. ADT of Polynomial class Polynomial{ public: Polynomial ( ); //Constructor int operator !( ); //Is zero-polynomial float Coef ( int e); intLeadExp ( ); //return max-exp PolynomialAdd (Polynomialpoly); PolynomialMult (Polynomial poly); float Eval ( floatx); //compute the valueof the PN } Prof. Q.Wang

  38. To computer the power of x, (Power Class) #include <iostream.h> classpower { doublex; inte; doublemul;//The value ofex public: power (doubleval, int exp);//constructor doubleget_power ( ) { return mul; } //Getex }; Prof. Q.Wang

  39. power::power (doubleval, intexp) { //Computer the power of valxe x = val; e = exp; mul = 1.0; if ( exp == 0 ) return; for ( ;exp>0;exp--) mul = mul * x; } main ( ) { power pwr ( 1.5, 2 ); cout << pwr.get_power ( ) << “\n”; } Prof. Q.Wang

  40. Representation of Polynomial (storage) 1st method: private: int degree; float coef [maxDegree+1]; Pn(x):pl.degree = n pl.coef[i] = ai, 0 in Prof. Q.Wang

  41. 2nd method: private: intdegree; float * coef; Polynomial::Polynomial (intsz) { degree = sz; coef = new float [degree + 1]; } The 1st and 2nd storages are NOT suitable for the following case P101(x) = 3 + 5x50 - 14x101 Prof. Q.Wang

  42. 3rd method: classPolynomial; class term {//item definition friend Polynomial; //PN class is the friend class of item class private: float coef; //coefficient int exp; //exponential }; Prof. Q.Wang

  43. class Polynomial { //Polynomial class public: …… private: static term termArray[MaxTerms]; //items static int free; //pos of current freespace // termPolynomial::termArray[MaxTerms]; // int Polynomial::free = 0; int start, finish; //start and finish pos of the items of //Polynomial } Prof. Q.Wang

  44. Examples: Two polynomials are stored in termArray A(x) = 2.0x1000+1.8 B(x) = 1.2 + 51.3x50 + 3.7x101 Prof. Q.Wang

  45. Addition of Polynomials • Requirement • The summarization polynomial is an new one • Method • To traverse two polynomials (A and B) until one of them has been traversed; • If the expsare equal, add two coefs. • If the addition of coefs are not equal to 0, new a item and append it into C, otherwise continue to traverse. • If the exps are not equal, add the item whose exp is lower into C. • If one of A and B has been traversed completely, it is easy to duplicate the remains of another one into C Prof. Q.Wang

  46. Polynomial Polynomial::Add (Polynomial B) { Polynomial C; inta = start;intb = B.start;C.start = free; float c; while ( a <= finish && b <= B.finish ) Switch( compare ( termArray[a].exp, termArray[b].exp) ) {//compare case ‘=’ : //exps are equal c = termArray[a].coef + //coef termArray[b].coef; if ( c ) NewTerm ( c, termArray[a].exp ); a++; b++;break; Prof. Q.Wang

  47. case ‘>’ :// new item with item b in C NewTerm ( termArray[b].coef, termArray[b].exp ); b++;break; case '<':// new item with item a in C NewTerm ( termArray[a].coef, termArray[a].exp ); a++; } for ( ; a <= finish; a++ ) //A has remains NewTerm ( termArray[a].coef, termArray[a].exp ); for ( ; b <= B.finish; b++ ) //B has remains NewTerm ( termArray[b].coef, termArray[b].exp ); C.finish = free-1; returnC; } Prof. Q.Wang

  48. Add a new item in the polynomial voidPolynomial::NewTerm ( float c,int e ) { // Add a new item into polynomial if ( free >= maxTerms ) { cout << "Too many terms in polynomials” <<endl; return; } termArray[free].coef = c; termArray[free].exp = e; free++; } Prof. Q.Wang

  49. STL Points of Chapter 3 • Array • ADT of array • Methods • Sequential List • ADT • Methods • Applications • Polynomial • ADT and Representation • Addition Prof. Q.Wang

  50. STL Overview Standard Template Library Dr. Qing Wang

More Related