1 / 18

Reale Gase, Phasenumwandlungen

Reale Gase, Phasenumwandlungen. Gasförmig, flüssig, fest. Inhalt. Van der Waalsche Zustandsgleichung Phasenumwandlungen Verflüssigung von Gasen. Van der Waalsche Zustandsgleichung. p,V,T Zustände berechnet mit der van der Waalschen Zustandsgleichung.

fergal
Download Presentation

Reale Gase, Phasenumwandlungen

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reale Gase, Phasenumwandlungen Gasförmig, flüssig, fest

  2. Inhalt • Van der Waalsche Zustandsgleichung • Phasenumwandlungen • Verflüssigung von Gasen

  3. Van der Waalsche Zustandsgleichung

  4. p,V,T Zustände berechnet mit der van der Waalschen Zustandsgleichung

  5. Abweichung von der Zustandsgleichung im realen Gas Beispiel: Isotherme Kompression von CO2 bei T=300 K 0 10 7,5 2,5 5,0 Druck [MPa] Bei 7,3 MPa erscheint flüssiges CO2 Bei weiterer Volumenverkleinerung bleibt der Druck konstant: „Dampfdruck“ über der Flüssigkeit

  6. p,V,T Zustände für ein reales Gas mit flüssiger Phase 0 10 7,5 2,5 5,0 Druck [MPa]

  7. Versuch zur Phasenumwandlung zwischen Flüssigkeit und Gas • In einer Glaskapillare wird CO2 Gas durch eine aufsteigende Hg Säule isotherm komprimiert. • Bei einem Druck von etwa 60 barerscheint flüssiges CO2 über dem Hg Spiegel. • Bei weiterer Verkleinerung des Volumens wird der zunächst erhöhte Druck durch weitere Verflüssigung, d. h. Volumenabnahme, abgebaut. • Es stellt sich nach kurzer Zeit der Dampfdruck über der Flüssigkeit wieder ein • Auf der p, V, T Fläche bewegt man sich auf der blau eingezeichneten Isothermen bei ca. 295 K nach links: Zuerst im Gas, dann im Koexistenzbereich von Gas und Flüssigkeit entlang einer „Maxwellschen Geraden“.

  8. p,V,T Zustände bei der CO2 Kompression im Versuch 0 10 7,5 2,5 5,0 Druck [MPa]

  9. p,V,T Zustandsfläche: Gas- und Flüssigkeit in CO2 Flüssige Phase Koexistenz von Gas und Flüssigkeit Gasphase

  10. Kritische Temperatur Gasphase Flüssige Phase Koexistenz von Gas und Flüssigkeit Gasphase Oberhalb T=304,2 Kkann CO2 nicht mehr verflüssigt werden: Es bleibt auch bei höheren Drucken in der Gasphase Die „kritische Temperatur“ für CO2 beträgt 304,2 K bei „kritischem Druck“ 7,3 MPa

  11. Die Dampfdruckkurve Bereich der Koexistenz von Gas und Flüssigkeit

  12. Die Dampfdruckkurve für konstantes Volumen p Flüssigkeit Gas T

  13. Koexistenz von drei Phasen Schmelzen Kritischer Punkt p Verdampfungswärme fest flüssig Schmelzwärme Sieden gasförmig T Sublimieren Tripelpunkt

  14. Versuch zum Joule Thomson Effekt • Erzeugung von Kohlensäureschnee

  15. Expansion von realen Gasen • Bei Abnehmender Dichte wird gegen die van der Waalschen Anziehungskräfte zwischen den Teilchen Arbeit verrichtet: Die Energie wird der inneren Energie des Systems entnommen • Unterhalb einer für das Gas spezifischen „Inversionstemperatur“ kühlt sich das Gas bei Expansion ab • Die Inversionstemperatur liegt für CO2 und Luft weit über der Zimmertemperatur, beide kühlen sich also bei Expansion ab. Mit dem Joule - ThomsonEffekt werden Luft und CO2 verflüssigt.

  16. Expansion von He- und Wasserstoff • He- und Wasserstoff erwärmen sich, wenn sie aus einer Druckflasche ausströmen: • Ihre Inversionstemperatur liegt unterhalb von -80°C. • Zur Verflüssigung dieser Gase werden sie mit flüssiger Luft unter ihre Inversionstemperatur abgekühlt

  17. Zusammenfassung • Für reale Gase entspricht die van der Waalsche Zustandsgleichung der allgemeinen Gasgleichung. Die Ergänzungen sind: • Das van der Waalsche Kovolumen berücksichtigt die endliche Größe realerTeilchen • Der Binnendruck berücksichtigt die van der Waalsche Wechselwirkung zwischen den Teilchen • Für jedes Gas gibt es eine „kritische Temperatur“, oberhalb der es bei allen Drucken im Gas Zustand bleibt • Effekt der Wechselwirkung: Temperaturabsenkung bei Expansion des Gases bis zur Verflüssigung • Voraussetzung: Start der Expansion unterhalb der „Inversionstemperatur“

  18. p fest flüssig gasförmig Tripelpunkt finis T

More Related