1 / 9

Validitas Kalimat Preposisi

Validitas Kalimat Preposisi. Logika Informatika Teknik Informatika STTA 2013. Contoh Soal 1. Buktikan validitas preposisi A : if ((not x) or (not y)) then (not(x and y)) A : A1  A2 (~ x  ~ y)  ~ (x  y). Pembuktian Validitas.

ferris
Download Presentation

Validitas Kalimat Preposisi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ValiditasKalimatPreposisi LogikaInformatika TeknikInformatika STTA 2013

  2. ContohSoal 1 BuktikanvaliditaspreposisiA : if ((not x) or (not y)) then (not(x and y)) A : A1  A2 (~ x  ~ y)  ~ (x  y)

  3. PembuktianValiditas ValiditasPreposisidapatdilakukandenganmengasumsikanpreposisitersebut SALAH!!

  4. PenyelesaianContohSoal 1 • Bentukkalimatimplikasi A : A1  A2 (~ x  ~ y)  ~ (x  y) • Misalkan A diasumsikansalah yang berarti : • Antsenden/premis/hipotesis A1 benar (~ x  ~ y) = T • Konklusi/konsekuen A2 salah ~ (x  y) = F

  5. PenyelesaianContohSoal 1 • Dimulaidarikonklusidulu (A2 = F)  periksaapakahhipotesisnya (A1 = T) ? • Dimulaidarihipotesisnyadulu (A1 = T)  periksaapakahkonklusinya (A2 = F) ?

  6. Cara a. • Konklusi A2 : ~ (x  y) = F  (x  y) = T supaya (x  y) = T maka x = T dan y =T • Periksahipotesis A1 : (~ x  ~ y) = F  F = F seharusnya A1 = T • Asumsi A = F tidakpernahterjadi preposisiA valid

  7. Cara b. • Hipotesis A1 = (~ x  ~ y) = T, adabeberapakemungkinan :

  8. ContohSoal 2 BuktikanvaliditaspreposisiB : (if x then y) if and only if ((not x) or y) Bentukkalimat B biimplikasi B1 B2 (x  y)  (~x  y)

  9. Kerjakan! • BuktikanvaliditaspreposisiC : if (if x then y) then (if (not x) then (not y))

More Related