1 / 34

CLEANSED LIFE + (2014-2015)

CLEANSED LIFE + (2014-2015). Project LIFE12 ENV/IT/000652 Innovative integrated methodology for the use of decontaminated river sediments in plant nursing and road building MURCIA, SPAIN, SEPTEMBRE 2015. Carlos García Izquierdo. CEBAS-CSIC). TRANSFORMAZIONE DEI SEDIMENTI COME PRATICA

fett
Download Presentation

CLEANSED LIFE + (2014-2015)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CLEANSED LIFE +(2014-2015) Project LIFE12 ENV/IT/000652 Innovative integrated methodology for the use of decontaminated river sediments in plant nursing and road building MURCIA, SPAIN, SEPTEMBRE 2015 Carlos García Izquierdo. CEBAS-CSIC) TRANSFORMAZIONE DEI SEDIMENTI COME PRATICA DI RICICLO SOSTENIBILE CLEANSED LIFE PROJECT

  2. AGRICULTURA INTENSIVA RESIDUI; produccionesenza fine FATTORI AMBIENTALI FATTORI ANTROPICI MEDIO AMBIENTE: DEGRADAZIONE CLIMA Temperatura, pioggia DESERTIFICAZIONE DEL TERRENO VEGETAZIONE (CO2) A PROBLEM FOR THE FUTURE

  3. RESIDUI E SOCIETÁ PROBLEMATICA * PRODUCCIONE IN AUMENTO (NON DESIDERABLE) * IMPOSIBILE RINUNCIARE ALLA PRODUCCIONE * UNA PROBLEMÁTICA CHE CRESCE NON TRATAMENTO: Inquinamento, odore, patogeni,.. Abbiamo neccesitá di risolvere il nostro problema di residui RESIDUIRISORSE

  4. RISIDUO “ZERO”: una situazioneideale Dobbiamo cercare nuove alternative per NON PRODURRE residui, o almeno, arrivare a una produzionepiúcontrollata e meno pericolosa. SOSTENIBILITÁ(non é semplice per qualche attivitá) Se si producono i residui, dobbiamo avere una normativa chiara per la sua eliminazione VALORIZZAZIONE DEI RESIDUI • RECOVERY (ENERGY) • REUSE (USED FOR OTHER PURPOSES) • RECYCLING: USED FOR ORIGINAL USE • CONVERSION: CONVERT A WASTE TO OTHER PRODUCT

  5. SEDIMENTI DRAGATI: UN PROBLEMA (CLEANSED) Le operazioni di dragaggio determinano il problema della gestione e del trattamento dei sedimenti di risulta. VALORIZZAZIONEI sedimenti possono non essere considerati rifiuti se, dopo eventuale trattamento, costituiscono materiale da utilizzare in campo sia civile che industriale nell’ottica sempre più necessaria dello sviluppo sostenibile (Economia Circolare) Il lavoro con i sedimenti possono riguardare i seguenti aspetti- caratterizzazione quali-quantitativa dei sedimenti;- le tecnologie di trattamento dei sedimenti contaminati- Possibilità per l’utilizzo dei sedimenti dragati. POSSIBILITÁ DI VALORIZZARE IL SEDIMENTO (SEMPRE DOPO TRATAMENTO)

  6. Photodegradation Volatilization CO2 Adsorption Biodegradation Desorption Dilution Soil Solution Solid soil phase Leaching Particula de suelo TRATTAMENTO PER I SEDIMENTI ORGANICS • Biostimulation • LANDFARMING • COMPOSTING MINERALS • Phytoremediation (PLANTS) • INERTIZATION

  7. CEBAS COMPOSTI ORGANICI (IDROCARBURI, PESTICIDI, ALTRI..) IN SEDIMENTI: ELIMINARE PER VIA BIOLOGICA • Biostimulazione APPLICARE METODI BIOLOGICI * AERAZIONE * NUTRIENTI SEDIMENTI CON INQUINANTI: LANDFARMING METODI BIOLOGICI (BIOESTIMULATION) ESTRUTTURA FINAL DEL PRODOTTO

  8. BIOTECNOLOGIA (Microorganismi per eliminare inquinanteorganici APPERTO NON APPERTO REATTORI

  9. FITOREMEDIAZIONE: PIANTA PER DECONTAMINARE ALTRE POSSIBILITÁ: INERTIZACIONE DI METALI PESANTI

  10. SEDIMENTO TRATTATO • Come sustrato per ilvivaio • (Suoloagricolapiú sedimento) • 2) Tecnosuolo come sustrato, e per eliminare • qualcheinquinantenel terreno • 3) Materiale per fare la strada

  11. “SEDIMENTO TRATATO” ENMIENDA PER IL SISTEMA SUOLO-PIANTA Sedimento con qualitá, in grado di migliorare la fertilitá e produttivitá del suolo ENMIENDA EDAFICA Aumentare la attivitá microbica (aerobica e anaerobica): batteri e fungi. Aumentare la struttura del terreno con il sedimento tratato. SEDIMENT FOR SOIL-PLANT SYSTEM

  12. SUBSTRATI ALTERNATIVI: SEDIMENTO • Pratica di produzionesostenibile • che può essere utilizzata per il • vivaio. • Ridurrecosti e rischi • Ridurre l’impatto ambientale • Puódare un valore aggiunto • Materiale per substrati • Low cost e rinnovabile • Che possono sostituire altri • substrati SEDIMENTI DRAGATI: POSSIBILITÁ DI USO SUOLO + SEDIMENTO: la proporzionetra uno e un altro é moltoimprotante

  13. SUBSTRATE QUALITY Physical and chemical properties of substrates Substrate quality is one of the most important influences on seedling growth. A good substrate has both the chemical and physical properties that promote healthy and rapid plant growth. These properties work together. A substrate that has many nutrients but is very heavy and does not allow the water to penetrate is not good. Similarly, a substrate that has adequate drainage, but is deficient in plant food, is not good. The physical properties of the substrate include: • how much water it can hold • how much air space it contains • itstexture • itsweight per container. The substrate must allow a large amount of water to be held without waterlogging. Air space (porosity) is necessary to allow air to enter and leave the substrate. The roots need to ‘breathe’, just as the leaves do. If the substrate holds too much water, the roots will suffocate. The chemical properties (‘fertility’) of the substrate include: • the amount of nutrients it contains • how easily available they are to the plants • the rate at which they are released to the plants.

  14. Sustainable Substrates For developing new substrates is a four-phase process. First, materials are identified that might be used as substrates on a regional basis in each of our respective regions. The second phase involves taking the material from its parent form and processing it into a usable substrate.  The third phase of the process involves observation of the materials in the container. The fourth phase is to determine the suitability of these materials over a period of 4 to 12 months, which is the typical production cycle for nursery crops. 

  15. TECNOSUOLI: UNA POSSIBILITÁ Technosols to be used as growing substrates in the greenhouses A good nursery practice is to mix soil with an inert (inactive) material like sand, sediments, and a rich material such as well-decomposed organic matter. Because sand and sediment do not contain nutrients, you can leave it out entirely if a good compost is available. As general rule, the following mixtures are used in bare-root beds, or in bags, but not in root trainer containers. The proportions are listed for the volume of each material. SoilSand Compost Sediment For heavy textured (clay) soils: 1 2 2 0,33 Formediumtextured (loam) soils: 1 1 1 0,33 For light textured (sand) soils: 1 0 1 0,33 Mineral materials, ash from biomass combustion, agricultural soil, biochar, composts and barley straw could be used . The new tecnosoils would have good properties for plant growth, e.g. good levels of nutrients (nitrogen, phosphorus and potassium), high acid buffering capacity, and organic matter stability.

  16. CEBAS Project LIFE12 ENV/IT/000652 CEBAS-CSIC (CLEANSED) Dr. Carlos Garcia Dra. Teresa Hernández Dr. J. Moreno Lcda. Mª Dolores Coll Lcda. Carmen Chocano Lcdo. Manuel Campoy Dña. Irene Piñera D. Alberto Lucas Dña. Ma del Mar Camacho Dña. Sara Ondoño EXPERIMENTAL GREENHOUSES (SANTOMERA-ABARÁN

  17. CLEANSED PROJECT SOIL/SEDIMENT: Control, T33 and T50 (36 x 3 = 108 samples) Times: T1, T2, T3 and T4 ANALYSIS FROM CEBAS-CSIC ON SAMPLES (afterplantation): Soils and Plants Project LIFE12 ENV/IT/000652

  18. CLEANSED (CEBAS-CSIC) ANALYSIS ON SAMPLES OF THE EXPERIMENT: Chemicalanalysis: pH, CE, OM, TOC, water soluble C and N Physicalanalysis: Moisture, water holding capacity, water curves, Toxicologicalanalysis: Cu, Zn, Cd, Cr, Ni, Pb Nutritional and elemental analysis (IONOME): N, P, K, Ca, Mg, Mn, Na, Fe Cationic Exchange Capacity Anions(F-, Cl-, NO2-, NO3-, Br-, SO4-2, PO4-3 ) Plantphytotoxic test (Petri plate). Germinationindex (Lepidiumsativun). Biologicalparameter. Microbialrespiration MICROCOSM EXPERIMENTS Project LIFE12 ENV/IT/000652

  19. Project LIFE12 ENV/IT/000652 SAMPLES USED FOR ANALYSIS (CNR—IBIMET+ISE) • FACTORS: • Sediment (0, 33%, 50%) • Soildepth • Sampling (three times) • Plants (threespecies)

  20. pH AND ELECTRICAL CONDUCTIVITY • Soil + TreatedSediment > soilsalinity. • Changeswiththe time of sampling. • No effectbydifferentplants Project LIFE12 ENV/IT/000652

  21. Project LIFE12 ENV/IT/000652 ORGANIC CARBON • Organiccarbon > Soil + TreatedSediment. • Plantyieldcould be responsible of it (plantdebris). • Differentplants and differentsampling

  22. Project LIFE12 ENV/IT/000652 TOTAL NITROGEN • Total Nitrogen > Soil + TreatedSediment. • 0-15 cm sampling > Total N.

  23. THE IONOMA: THE KEY OF SOIL FERTILITY ICP-OES equipment Micro and macronutrients were analyzed by ICP-OES (Inductively coupled plasma-optical emision spectrometer) cuantitative determination, is an elemental analysis technic (IONOMIC SERVICE). The “Ionoma” of soils is an important parameters to know the possible importance as biofertilizer, or the pollutant capacity of a treatment. Soil IONOME is indicative of chemical quality of soil Project LIFE12 ENV/IT/000652

  24. Project LIFE12 ENV/IT/000652 SOLUBLE ELEMENTS -- A Criteria of SOIL FERTILITY: itisimportant to knowthe total quantity of elements, butalsotheavailability of theseelements

  25. Project LIFE12 ENV/IT/000652 SOLUBLE ELEMENTS • Effecton vegetal specie (Fe and P). • >> Values in lastsampling

  26. Project LIFE12 ENV/IT/000652 ANIONS • Anions > lastsampling; rootexudatescould be responsibles of it

  27. CLEANSED (LIFE) SOIL BIODIVERSITY: FUNCTIONALITY SOIL RESPIRATION Thedegradation of organicmatteris a property of allheterotrophs, and itsrateiscommonlyused to indicatethelevel of microbialactivity Themetabolicactivity of the sediments, measured as microbial respiration, showdthelowestvalues Project LIFE12 ENV/IT/000652

  28. Project LIFE12 ENV/IT/000652 • Changesforsoilrespirationwithsampling. • Microbialactivityisnotaffectedbytreatedsediments

  29. Project LIFE12 ENV/IT/000652 PHYTOTOXICITY: PLANT TEST Lolium perenne PHYTOTOXICITY ASSAY SEDIMENT 5 daysincubation 28 ºC and humidity Germinatiónseeds * % germinatedseeds * Roots GerminationIndex

  30. Project LIFE12 ENV/IT/000652 • Soil + Sediments: no phytotoxicitywasobserved • Lastsampling >> GerminationIndex

  31. Project LIFE12 ENV/IT/000652 PHYSICAL PARAMETER Curves (water holding) in control soil

  32. Project LIFE12 ENV/IT/000652 CONCLUSIONS (Ourexperiment) (Soil + TreatedSediment) 1)“Soil +Treated Sediment”: a positive effect on some soil parameters (total organic carbon, soluble organic carbon, cation exchange capacity, soil total nitrogen,…). 2) Electric conductivity, Ca and S total and soluble, increased when treated sediment was used as amendment. 3) Fe and P soluble were detected on control soil 4) No change for soil heavy metals by the use of treated sediments 5) No change for microbial activity by the use of treated sediment 6) The use of treated sediment did not affect the phytotoxicity 7) Physical parameters: some positive effect.

  33. PROPOSTA SI “CONDIZIONATO” PER VALORIZZARE I NOSTRI RESIDUI USO RAZIONALE E LOGICO DI QUESTI MATERIALI: “NON TUTTO PUÓ ESSERE VALIDO” -- Analisi esaustiva dei residui (MONITORAGGIO) -- Ottimizzazione per dosi e management (PUNTO CHIAVE) -- Conoscenza per il terreno -- Controllo successivo EVITARE RISCHI PER L’AMBIENTE E GLI UOMINI INFORMAZIONE // RICERCA // NORMATIVE

  34. CEBAS WORKING GROUP THANK YOU FOR YOUR ATTENTION

More Related