1 / 24

Stability and Symmetry Breaking in Metal Nanowires II: Linear Stability Analyses

Explore the linear stability and symmetry breaking in metal nanowires through comprehensive analyses, considering various cross-section shapes and material influences.

fieldsn
Download Presentation

Stability and Symmetry Breaking in Metal Nanowires II: Linear Stability Analyses

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Charles Stafford Stability and Symmetry Breaking in Metal Nanowires II: Linear Stability Analyses D. F. Urban, J. Bürki, C.-H. Zhang, C. A. Stafford & H. Grabert, PRL 93, 186403 (2004) Capri Spring School on Transport in Nanostructures, March 29, 2007

  2. Electron-shell potential

  3. 1. Linear stability analysis of a cylinder Mode stiffness: Classical (Rayleigh) stability criterion:

  4. 1. Linear stability analysis of a cylinder (m=0) Mode stiffness: Classical (Rayleigh) stability criterion:

  5. Mode stiffness α(q) F. Kassubek, CAS, H. Grabert & R. E. Goldstein, Nonlinearity 14, 167 (2001)

  6. Stability under axisymmetric perturbations A>0 C.-H. Zhang, F. Kassubek & CAS, PRB 68, 165414 (2003)

  7. Stability of nanocylinders at ultrahigh current densities Generalized free energy for ballistic nonequilibrium electron distribution. Coulomb interactions included in self-consistent Hartree approximation. ! C.-H. Zhang, J. Bürki & CAS, PRB 71, 235404 (2005)

  8. 2. General linear stability analysis General cross section: Free energy: Stability requires: • Stationarity • Convexity

  9. General stability analysis of a cylinder D. Urban, J. Bürki, CAS & H. Grabert PRB 74, 245414 (2006)

  10. 3. Stable elliptical nanowires D. F. Urban, J. Bürki, C.-H. Zhang, CAS & H. Grabert, PRL 93, 186403 (2004)

  11. Combining cylindrical and elliptical structures: Theory of shell and supershell effects in nanowires D. F. Urban, J. Bürki, C.-H. Zhang, CAS & H. Grabert, PRL 93, 186403 (2004)

  12. Combining cylindrical and elliptical structures: Theory of shell and supershell effects in nanowires • Magic cylinders ~75% of most-stable wires. • Supershell structure: most-stable elliptical wires occur at the nodes • of the shell effect. D. F. Urban, J. Bürki, C.-H. Zhang, CAS & H. Grabert, PRL 93, 186403 (2004)

  13. Comparison of experimental shell structure for Na with predicted most stable Na nanowires Exp: A. I. Yanson, I. K. Yanson & J. M. van Ruitenbeek, Nature 400, 144 (1999) Theory: D. F. Urban, J. Bürki, C.-H. Zhang, CAS & H. Grabert, PRL 93, 186403 (2004) Discussion: D. F. Urban et al., Solid State Comm. 131, 609 (2004)

  14. 4. Quadrupolar cross sections D. Urban, J. Bürki, CAS & H. Grabert PRB 74, 245414 (2006)

  15. Elliptical vs. quadrupolar cross sections Quadrupole favored for large deformations due to reduced surface energy. For ε < 1.3, quadrupole ≈ ellipse. No generically preferred shape; can be positive or negative. → Integrable cross sections not special (except cylinder)

  16. Higher multipole deformations Higher-m deformations less stable due to increased surface energy. D. Urban, J. Bürki, CAS & H. Grabert PRB 74, 245414 (2006)

  17. 5. Material dependence of stability Na Relative stability of deformed structures depends on surface tension in natural units: Absolute stability also depends on ; → Lecture 3. Au

  18. Special case: Aluminum Two different types of histograms (history dependent) Crossover from electronic to atomic shell effects at A. I. Mares, D. F. Urban, J. Bürki, H. Grabert, CAS & J. M. van Ruitenbeek, cond-mat/0703589

  19. Extracting individual conductance peaks A. I. Mares, D. F. Urban, J. Bürki, H. Grabert, CAS & J. M. van Ruitenbeek, cond-mat/0703589

  20. Linear stability analysis for Aluminum Trivalent metal; Fermi surface free-electron like in extended-zone scheme. Physics of Al clusters suggests NFEM applicable for → Same magic sequence, but relative stability of deformed wires enhanced. A. I. Mares, D. F. Urban, J. Bürki, H. Grabert, CAS & J. M. van Ruitenbeek, cond-mat/0703589

  21. Electron-shell structure: Theory vs. Experiment A. I. Mares, D. F. Urban, J. Bürki, H. Grabert, CAS & J. M. van Ruitenbeek, cond-mat/0703589

  22. Superdeformed nanowires cf. Physics of superdeformed nuclei A. I. Mares, D. F. Urban, J. Bürki, H. Grabert, CAS & J. M. van Ruitenbeek, cond-mat/0703589

  23. 6. Conclusions • Cylinders are special: • Only generically stable shape. • Analogy to shell-effects in clusters and nuclei; • quantum-size effects in thin films. • Open questions: • Structural dynamics (Urban seminar, Lecture 3) • Putting the atoms back in…

  24. Putting the atoms back in Left (experiment): Y. Kondo & K. Takayanagi, Science289, 606 (2000) Right (theory): Dennis Conner, Nate Riordan, J. Bürki & CAS (unpublished)

More Related