1 / 51

RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY

RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY. ν. Sergio Pastor (IFIC). RELIC NEUTRINOS: OUTLINE. Standard neutrinos. Extra radiation and Neutrino asymmetries. Massive neutrinos. RELIC NEUTRINOS. Standard neutrinos. Extra radiation and Neutrino asymmetries. Massive neutrinos.

finn-ayala
Download Presentation

RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY ν Sergio Pastor (IFIC)

  2. RELIC NEUTRINOS: OUTLINE Standard neutrinos Extra radiation and Neutrino asymmetries Massive neutrinos

  3. RELIC NEUTRINOS Standard neutrinos Extra radiation and Neutrino asymmetries Massive neutrinos

  4. Standard Relic Neutrinos Neutrinos in equilibrium fν(p,T)=fFD(p,T)

  5. Neutrinos in Equilibrium 1 MeV  T mμ Tν= Te = Tγ

  6. Standard Relic Neutrinos Neutrinos in equilibrium fν(p,T)=fFD(p,T)

  7. Neutrino decoupling

  8. Neutrino decoupling Tdec(νe) ~ 2.3 MeV Tdec(νμ,τ) ~ 3.5 MeV Decoupled Neutrinos fν(p)=fFD(p,Tν)

  9. Neutrino and Photon temperatures At T~me, electron-positron pairs annihilate heating photons but not the decoupled neutrinos Decoupled neutrinos stream freely until non-relativistic

  10. Neutrinos after decoupling • Number density • Energy density Massless Massive mν>>T

  11. Neutrinos and Cosmology Neutrinos influence several cosmological scenarios

  12. RELIC NEUTRINOS Standard neutrinos Extra radiation and Neutrino asymmetries Massive neutrinos

  13. Relativistic particles in the Universe At T<<me, the radiation content of the Universe is Effective number of relativistic neutrino species Traditional parametrization of the energy density stored in relativistic particles Neff is not exactly 3 for standard neutrinos (if mν<<T)

  14. Non-instantaneous neutrino decoupling At T~me, e+e- pairs annihilate heating photons But, since Tdec(νe) ~ me, neutrinos slightly share a small part of the entropy release

  15. Non-instantaneous neutrino decoupling fν=fFD(p,Tν)[1+δf(p)] Tν 0.15% larger ρ(νe) 1% larger ρ(νμ,τ) 0.5% larger Non-instantaneous decoupling + QED corrections to e.m. plasma Neff=3.0395 But, since Tdec(νe) ~ me, neutrinos slightly share a small part of the entropy release Mangano et al 2002

  16. Extra relativistic particles • Extra radiation can be: • scalars, pseudoscalars, sterile neutrinos (totally or partially • thermalized, bulk), neutrinos in very low-energy reheating • scenarios, relativistic decay products of heavy particles… • Particular case: relic neutrino asymmetries Constraints from BBN and from CMB+LSS

  17. BBN: Creation of light elements Produced elements: D, 3He, 4He, 7Li and small abundances of others Standard BBN: the baryon density is the sole parameter

  18. BBN: Predictions vs Observations After WMAP ΩBh2=0.023±0.001 Fields & Sarkar PDG 2002

  19. Effect of Neff on BBN Neff fixes the expansion rate during BBN 3.4 3.2 3.0 (Neff)>0 4He Burles, Nollett & Turner 1999

  20. BBN: allowed ranges for Neff Hannestad astro-ph/0303076 Not significantly different from previous analyses Hannestad astro-ph/0303076 Lisi et al 1999, Esposito et al 2000, Burles et al 2001, Cyburt et al 2002… Hannestad astro-ph/0303076 Cyburt et al, astro-ph/0302431

  21. CMB DATA: FIRST YEAR WMAP vs COBE

  22. CMB DATA: INCREASING PRECISION Map of CMBR temperature Fluctuations Multipole Expansion Angular Power Spectrum

  23. CMB DATA: INCREASING PRECISION Degrees (θ) 10 1 0.1

  24. CMB DATA: FIRST YEAR OF WMAP Degrees (θ) 10 1 0.1

  25. Effect of Neff on CMB • Neff modifies the radiation content: • Changes the epoch of matter-radiation equivalence

  26. CMB+LSS: allowed ranges for Neff Problem: parameter degeneracies • Set of parameters: ( Ωbh2 , Ωcdmh2 , h , ns , A , b , Neff ) • DATA: WMAP + other CMB + 2dF + HST (+ SN-Ia) • Upper bound on h important to fix upper limit on Neff • Flat Models • Non-flat Models 95% CL Crotty, Lesgourgues & SP, astro-ph/0302337 Pierpaoli astro-ph/0302465 95% CL

  27. Future bounds on Neff • Next CMB data from WMAP and PLANCK (other CMB experiments on large l’s) temperature and polarization spectra • Forecast analysis in ΩΛ=0 models Lopez et al, PRL 82 (1999) 3952 PLANCK Recent analysis: Larger errors Bowen et al 2002 WMAP ΔNeff ~ 3 (WMAP) ΔNeff ~ 0.2 (Planck)

  28. Degenerate Relic Neutrinos    /T Neutrinos in equilibrium fν(p,T)=fFD(p,T)

  29. Relic neutrino asymmetries Fermi-Dirac spectrum with temperature T and chemical potential  Raffelt More radiation

  30. Degenerate Nucleosynthesis If 0 , for any flavor ()>(0) 4He Plus thedirect effecton np if(e)0 e>0  4He Pairs (e,N)that produce the same observed abundances forlarger B Kang & Steigman 1992

  31. Combined bounds BBN & CMB-LSS Degeneracy direction (arbitrary ξe) Hansen et al 2001 Hannestad 2003 In the presence of flavor oscillations ?

  32. Flavor neutrino oscillations in the Early Universe • Density matrix • Mixing matrix • Expansion of the Universe • Charged lepton background (finite T contribution) • Collisions (damping) • Neutrino background: diagonal and off-diagonal potentials Dominant term: Synchronized Neutrino Oscillations

  33. Evolution in ATM + solar LMA (13=0) BBN Effective flavor equilibrium (almost) established  Dolgov et al 2002

  34. Evolution in ATM + solar LOW (13=0) BBN Synchronized neutrino oscillations Small conversion before the onset of BBN

  35. RELIC NEUTRINOS Standard neutrinos Extra radiation and Neutrino asymmetries Massive neutrinos

  36. Neutrinos as Dark Matter • Neutrinos are natural DM candidates • They stream freely until non-relativistic (collisionless phase mixing) Neutrinos are HOT Dark Matter • First structures to be formed when Universe became matter -dominated • Ruled out by structure formation CDM Neutrino Free Streaming

  37. Neutrinos as Dark Matter • Neutrinos are natural DM candidates • They stream freely until non-relativistic (collisionless phase mixing) Neutrinos are HOT Dark Matter • First structures to be formed when Universe became matter -dominated • Ruled out by structure formation CDM

  38. Power Spectrum of density fluctuations Massive Neutrinos can still be subdominant DM: limits on mν from Structure Formation CMB experiments Galaxy Surveys

  39. Neutrinos as Hot Dark Matter • Effect of Massive Neutrinos: suppression of Power at small scales W. Hu

  40. Effect of massive neutrinos on the CMB and Matter Power Spectra Max Tegmark’s homepage www.hep.upenn.edu/~max/

  41. 2dFGRS Galaxy Survey

  42. 2dFGRS Galaxy Survey ~ 1300 Mpc

  43. Power spectrum of density fluctuations from 2dF Non-linearity Bias b2(k)=Pg(k)/Pm(k) 2dFGRS [Elgarøy et al] 2002

  44. Neutrino mass in 3-neutrino schemes From present evidences of atmospheric and solar neutrino oscillations eV eV solar m0 atm atm solar 3 degenerate massive neutrinos Σmν = 3m0`

  45. Direct laboratory bounds on mν Searching for non-zero neutrino mass in laboratory experiments • Tritium beta decay: measurements of endpoint energy • m(νe) < 2.2 eV (95% CL) Mainz-Troitsk • Future experiments (KATRIN) m(νe) ~ 0.3 eV • Neutrinoless double beta decay: if Majorana neutrinos • 76Ge experiments: ImeeI < 0.35 eV

  46. Bound on mν after first year WMAP data 3 degenerate massive neutrinos Σmν < 0.71 eV Ωνh2 < 0.0076 95% CL m0 < 0.23 eV WMAP+CBI+ACBAR+2dFGRS+Lyman α Spergel et al astro-ph/0302209

  47. Is the 3+1 LSND scenario ruled out ? Pierce & Murayama hep-ph/0302131 Strumia hep-ph/0201134 (v4) Giunti hep-ph/0302173 3+1 solution strongly disfavored Σmν < 0.71 eV Ωνh2 < 0.0076 More conservative Σmν < 1.01 eV Hannestad astro-ph/0303076 Elgarøy & Lahav astro-ph/0303089 Small marginally allowed region

  48. Real bound on the 3+1 LSND scenario • Take into account the number of neutrino species • 3+1 scenario: 4 neutrinos (including thermalized sterile) • Calculate the bounds with Nν > 3 Abazajian 2002, di Bari 2002 WMAP + Other CMB + 2dF + HST + SN-Ia 3 ν 4 ν Hannestad astro-ph/0303076 (also Elgarøy & Lahav, astro-ph/0303089) 95% CL 5 ν 1 massive + 3 massless case not yet considered Crotty, Lesgourgues & SP, in preparation Hannestad

  49. Future bounds on Σmν • Next CMB data from WMAP and PLANCK (other CMB experiments on large l’s) temperature and polarization spectra • SDSS galaxy survey: 106 galaxies (250,000 for 2dF) • Forecast analysis in WMAP and ΩΛ=0 models Hu et al, PRL 80 (1998) 5255 With current best-fit values

  50. Future bounds on Σmν • Updated analysis: Hannestad astro-ph/0211106 • Σm detectable at 2σ if larger than • With a galaxy survey ~10 times SDSS 0.03-0.06 eV • From weak gravitational lensing: sensitive to both dark energy and neutrino mass. Future ~ 0.1 eV • 0.45 eV (WMAP+SDSS) • 0.12 eV (PLANCK+SDSS) Abazajian and Dodelson astro-ph/0212216

More Related