1 / 80

Quark Coalescence and Hadron Statistics

Quark Coalescence and Hadron Statistics. Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics. T.S.Bir ó (RMKI Budapest, Univ. Giessen). School of Collective Dynamics in High-Energy Collisions, Berkeley, 19-26 May, 2005. Collaborators.

Download Presentation

Quark Coalescence and Hadron Statistics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quark Coalescence and Hadron Statistics • Valence quark model of hadrons • Quark recombination • Hadronization dynamics • Hadron statistics T.S.Biró (RMKI Budapest, Univ. Giessen) School of Collective Dynamics in High-Energy Collisions, Berkeley, 19-26 May, 2005

  2. Collaborators • József Zimányi, KFKI RMKI Budapest • Péter Lévai, KFKI • Tamás Csörgő, KFKI • Berndt Müller, Duke Univ. NC USA • Christoph Traxler • Gábor Purcsel, KFKI • Antal Jakovác, BMGE (TU) Budapest • Géza Györgyi, ELTE Budapest • Zsolt Schram, DE Debrecen

  3. Valence Quark Model of Hadrons • Mass formulas (flavor dependence) • Spin dependence • Alternatives: partons, strings, ... Basic cross sections e p : e  = 3 : 2

  4. Valence Quark Model of Hadrons Quark masses: M = (u,d) m, (s) m s Quark hypercharges: Y = (u,d) 1/3, (s) -2/3 Naive quark mass formula: M = M - M Y 0 1 with M = (2m + m ) / 3 and M = m - m 0 s 1 s M ≠ 0 breaks SU(3) flavor symmetry 1

  5. Valence Quark Model of Hadrons 2 More terms: M = a + bY + c T(T+1) + d Y Test on baryon decuplet masses with last 2 terms linear (like x + y Y)  (3/2, 1): 15c/4 + d = x + y *  (1/2,-1): 3c/4 + d = x - y  ( 0,-2): 4d = x - 2y Solution: x = 2c, y = 3c/2 d = -c/4.

  6. Valence Quark Model of Hadrons Gell-Mann Okubo mass formula: M = a + bY + c (T(T+1) - Y / 4) 2 • N (qqq: ½, +1) a + b + c / 2 • (qqs: 1, 0) a + 2 c • (qqs: 0, 0) a  (qss: ½, -1) a – b + c / 2 Check 3M( ) + M( ) = 2M(N) + 2M( ) : difference 8 MeV/ptl.

  7. Valence Quark Model of Hadrons Gürsey - Radicati mass formula: M = a + bY + c (T(T+1) - Y / 4)+ d S(S+1) 2 • SU(6) quark model: (flavor SU(3), spin SU(2)) • quark: [6] = [3,2] • meson: (3,2)×(3,2) = (1,1)+(8,1)+(1,3)+(8,3) • baryon: 6×6×6 = 20+56+70+70 (only 56 is color singlet)

  8. Valence Quark Model of Hadrons Fit to 56-plet masses: a = 1066.6 MeV, b = -196.1 MeV c = 38.8 MeV, d = 65.3 MeV Linear dominance!  additive mass hadronization More success: magnetic moments No hint for formation probability

  9. Quark Recombination • (Non)Linear coalescence (Bialas, ZLB) • ALCOR (Zimanyi, Levai, Biro) • Distributed mass quarks (ZLB) hep-ph/9904501 PLB347:6,1995 PLB472:243,2000 nucl-th/0502060

  10. Quark Recombination Linear vs nonlinear coalescence meson[ij] = a q[i] q[j] baryon[ijk] = b q[i] q[j] q[k] With lowest multiplets: quarks are redistributed in a few mesons and baryons # counting all flavors q =  + K + 3N + 2Y + X coalesced numbers N = C b q q =  + K + 3N + 2Y + X 3 3 s =  + K + Y + 2X + 3 N q s =  + K + Y + 2X + 3 et cetera

  11. Quark Recombination _ _ A simple example: q, q  , N, N Q = b q q _ 3 q = C Q Q + 3C Q =  + 3 N  N _ _ _ _ 3 q = C Q Q + 3C Q =  + 3 N  N _ 3 N / C * N / C = (  / C ) N N  _ 3 2/3 (r ) = (q -  ) ( q -  ) with r = (3C ) / C N 

  12. Quark Recombination small r limit: LHS _ RHS _ q > q (q q ) _ _ _ 3 3 N = r q / 3(q – q)  _ q q _ _ N = (q – q)/3 + N (q + q ) / 2 _ _  = q - 3 N _ 3 Features: N ≠ …q ,  ≠ … q q

  13. Quark Recombination Note:  ≠  possible due to S ≠ S while s = s Key: b is sensitive to the q – q inbalance! s ratios of ratios and their powers are testable! d(K) = K/K = 1.80 ± 0.2 d(Y) = (Y/Y) / (N/N) = 1.9 ± 0.3 d(X) = (X/X) / (N/N) = 1.89 ± 0.15 d() = (/) / (N/N) = 1.76 ±0.15 1/2 1/2 1/3 1/3 CERN SPS data

  14. Quark Recombination ALCOR: 2Nflavor parameters = Nf che- mical potentials + Nf fugacities this is just not grand canonical, but explicit in the particle numbers.

  15. Quark Recombination nucl-th/0502060 Distributed mass quarks form hadrons. 1.) assume hadronic wave packet is narrow in relative momentum  p(a) = p(b) = p/2 2.) mass is nearly additive  m = m(a)+m(b) 3.) coalescence convolves phase space densities   ∫ ∫ F(m,p) = dm dm (m-m -m ) f(m ,p/2) f(m ,p/2) a b a b a b 0 0 The product f(x) f(m-x) is maximal at x = m /2 .

  16. Quark Recombination ½ ln (m) = - (a/T) (a/m + m/a ) f(m,p) = (m) exp ( - E(m,p) / T )

  17. Quark Recombination pion

  18. Quark Recombination proton

  19. Quark Recombination ratio

  20. Hadronization dynamics • Parton kinetics + recombination (MFBN) • Colored molecular dynamics (TBM) • Color confinement as 1/density (ZBL) • Multpilicative noise in quark matter (JB) • Non-extensive Boltzmann equation (BP) PRC59:1620, 1999 JPG27:439, 2001 PRL94:132302, 2005 hep-ph/0503204

  21. ColoredMolecular Dynamics g

  22. Colored Molecular Dynamics

  23. Colored Molecular Dynamics

  24. Color confinement as 1/density reaction A + B  C conserved: N + N = N (0), N + N = N (0) A C A B C B  rate eq.: N = -R ( N - N )(N - N ) - C C + C resulted number: N () = N N (1-K) / (N -KN ) - + - C + ∫ with K = exp(r (N - N )), r = R(t)dt + -

  25. Color confinement as 1/density If A and B colored, C not: N () = N (0) = N (0) = N limit: r(N - N )  0, K exp linearized N () = r N / ( 1 + rN ) (r   is required!) 1-dim exp : r = v/V t ln ( t / t ) 3-dim exp : r = v/3V t ( 1 - (t /t ) ) conclusion:  ~ t ~ 1 / density for all quarks to be hadronized C A B 0 - + 2 0 0 0 0 1 0 3 0 0 0 1 3

  26. Color confinement as 1/density

  27. Additive and multiplicative noise AJ+TSB, PRL 94, 2005 Equivalent descriptions: 1. Langevin  = G = F p =  -  p 2C 2B 2D c c c 2. Fokker Planck 2 K = F – Gp ∂f ∂ ∂ 1 = ( K f ) - ( K f ) 2 1 2 2 ∂t ∂p ∂p K = D – 2Bp + Cp 2

  28. Exact stationary distribution: v  p  f = f (D/K ) exp(- atan( ) ) 0 2  D – Bp with v = 1 + G/2C power  = GB/C – F exponent 2 2  = DC – B (small or large) parameter 2 For F = 0 characteristic scale: p = D/C. c

  29. Exact stationary distribution for F = 0, B = 0: -(1+G/2C) 2 C p f = f ( 1 + ) 0 D 2 With E = p / 2m this is a Tsallis distribution! q 1 – q E f = f ( 1 + (q-1) ) 0 T Tsallis index: q = 1 + 2C / G Temperature: T = D / mG

  30. Limits of the Tsallis distribution: p  p : Gauss c 2 f ~ exp( - Gp /2D ) p  p : Power-law c -2v f ~ ( p / p ) c

  31. Energy distribution limits: E  E : f ~ exp( - E / T ) c -v f ~ (E / E ) E  E : c c Relation between slope, inflection and power !! v = 1 + E / T c

  32. Stationary distributions For F=0, B=0 the Tsallis distribution is the exact stationary solution Gamma: p = 0.1 GeV F ≠ 0 c Gauss: p = ∞ c Zero: p = 10 GeV B = D/C c 2 Power: p = 1 GeV F ≠ 0 c

  33. Generalization TSB+GGy+AJ+GP, JPG31, 2005 < z(t) > = 0 . ∂E p = z - G(E) < z(t)z(t') > = 2 D(E) (t-t') ∂p In the Fokker – Planck equation: K (p) = D(E) 2 ∂E = K (p) -G(E) 1 ∂p Stationary distribution: ( ) A dE ∫ f(p) = exp - G(E) D(E) D(E)

  34. Generalization Stationary distribution: ( ) dE ∫ f(p) = A exp - T(E) 1) Gibbs: T(E) = T  exp(-E/T) 2) Tsallis: T(E) = T/q + (1-1/q) E  -q /(q-1) ( 1 + (q-1) E / T)

  35. Inverse logarithmic slope temperature 1 d ln f (E) = T(E) dE D(E) T (E) = G(E) + D'(E) T = D(E) / G(E) T = D(0) / G(0) Einstein Gibbs

  36. Special case: both D(E) and G(E) are linear T Walton – Rafelski ? slope T Einstein 1 1 1 = + T E T c T Gibbs Einstein Gibbs E E c

  37. Fluctuation Dissipation theorem ) ( D (E) = T(E) G (E) + D' (E) ij ij ij (Hamiltonian eom does not changeenergy E!) . p = -G  E + z j i ij i ∞ 1 ∫ G (x) f(x) dx D (E) = ij ij f(E) E with f(E) stationary distribution

  38. Fluctuation Dissipation theorem particular cases ( for constant G ): Gibbs: D = T G ij ij ) ( D (E) = T + (q-1) E G Tsallis: ij ij

  39. T. S. Bíró and G. Purcsel (University of Giessen, KFKI RMKI Budapest) Non-Extensive Boltzmann Equation hep-ph/0503204 • Non-extensive thermodynamics • 2-body Boltzmann Equation + non-ext. rules • Unconventional distributions • H-theorem and non-extensive entropy • Numerical simulation

  40. Non-extensive thermodynamics f = f f statistical independence 1 12 2 non-extensive addition rule E = h ( E , E ) 1 12 2 non-extensive addition rules for energy, entropy, etc. h ( x, y ) ≠x + y

  41. 2,3 1,2 Sober addition rules associativity: 3 1 h ( h ( x, y ) , z ) = h ( x, h ( y, z ) ) general math. solution: maps it to additivity X ( h ) = X ( x ) + X ( y ) X( t ) is a strict monotonic, continous real function, X(0) = 0

  42. Boltzmann equation  ∫ f = w ( f f - f f ) 3 4 1 2 1 1234 234 2 w = M ( p + p - p - p )  2 3 4 1234 1234 1 (h( E , E ) - h( E , E )) 2 3 4 1

  43. Test particle simulation y h(x,y) = const. E E 2 E 4 E x E 3 E 1 E 3 -1 ∫ uniform random: Y(E ) = (  h/  y) dx 3 h=const 0

  44. canonical equilibrium: f ~ exp ( - X( E ) / T ) • 2-body collisions: X(E ) + X(E ) = X(E ) + X(E ) • non-extensive entropy density: s = df X ( - ln f ) • H-theorem for X( S ) = - f ln f Consequences 1 2 3 4 -1 ∫ ∫ tot

  45. T h e r m o d y n a m i c s e s rule additive equilibrium entropy name h ( x, y ) X ( E ) f ( E ) s [ f ] general x + y E exp( - E / T) - f ln f Gibbs -1/aT q 1 x + y + a xy ln(1+aE) (1+aE) (f - f)/(q-1) Tsallis a q 1/q q q q ( x + y ) E exp( - E / T) … Lévy - 1/ (1-q) q 1 x y ln E E f Rényi 1- q

  46. S o m e m o r e . . . k-deformed statistics (G.Kaniadakis), X( E ) = (T / k) asinh ( kE / T ), h( x, y ) = x sqrt( 1 + ( ky / T ) ) + y sqrt( 1 + ( kx / T ) ) s[ f ] = ( f /(1-k) - f /(1+k) ) / 2k also gives a power-law tail: ~ (2kE/T) 2 2 1-k 1+k -1/k

  47. Cascade simulation • Momenta and energies of N “test” particles • Microevent: new random momenta, so that X(E1) + X(E2) = X(E1’) + X(E2’) • Relative angle rejection or acceptance • Initially momentum spheres, Lorentz-boosted • Distribution of E is followed and plotted logarithmically

  48. Movie: Boltzmann a = 0 proton y=2

  49. Movie: Boltzmann a = 0 proton y=2

  50. Movie: Boltzmann a = 0 pion y=2

More Related