1 / 49

Selected Catalytic Reactions Involving Selenium Compounds

Selected Catalytic Reactions Involving Selenium Compounds. Carl Trudel, Literature Meeting Wednesday, April 11 th 2012. About this presentation. Singh, F. V.; Wirth, T. In Organoselenium Chemistry ; Wiley-VCH Verlag GmbH & Co. KGaA, 2012, p 321-360.

gaille
Download Presentation

Selected Catalytic Reactions Involving Selenium Compounds

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Selected Catalytic Reactions Involving Selenium Compounds Carl Trudel, Literature Meeting Wednesday, April 11th 2012

  2. About this presentation • Singh, F. V.; Wirth, T. In Organoselenium Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA, 2012, p 321-360. • Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  3. About Me

  4. Presentation Schedule • Some selenium facts • Stoichiometric reactions • Selenium as a catalyst • Carbonylation • Oxidation (B.-V., epoxidation, selenylation-deselenylation, alkyne, allylic, alcohol, imine, aniline...) • Halobromation • GPx like activity • Alkylation • Selenium as a ligand for • Copper • Palladium

  5. Fun Facts • Discovered by J. J. Berzelius in 1817. • Selenium => Selene (moon) • Chalcogen (O, S, Te) • Among the 25 least common elements • 0.05 – 0.09 ppm in the earth crust • Recommended daily intake: 55µg (max 400µg/day) • >1000µg/day => intoxications • Brazil nuts, fishes and seafood (oyster and tuna)... • North American cereals (Beer!) Berzelius, J. J. Afhandl. Fys. KemiMineralogi.1818, 42. Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 285-302. http://www.passeportsante.net/fr/Solutions/PlantesSupplements/Fiche.aspx?doc=selenium_ps [April 2012]

  6. Other Facts and Nomenclature • Used in everyday applications • Glass-making, electronics, printers, solar cells • Glutathione peroxidase enzymes and selenoproteines • Antioxidants, antitumor, antimicrobial, antiviral • Se(s) 44.84 $/mol • SeO2 54.59 $/mol • Ph2Se 4 768.33 $/mol • (PhSe)2 3 970,29 $/mol • [mCPBA 120.11 $/mol] www. sigmaaldrich.com [april 2012]

  7. Soichiometric Selenium Chemistry Thompson, D. P.; Boudjouk, P. J. Org. Chem.1988, 53, 2109-2112. Reich, H. J.; Cohen, M. L.; Clark, P. S. Org. Synth. 1988, 50-9, 533-537. Santi, C.; Wirth, T. Tetrahedron: Asymm.1999, 10, 1019-1023.

  8. 1st Selenium Catalyzed Reaction • Carbonylation of aminoalcohols Sonoda, N.; Yamamoto, G.; Natsukawa, K.; Kondo, K.; Murai, S. Tetrahedron Lett. 1975, 16, 1969-1972.

  9. Selenium Based Oxygen Transfer Reagents • Perseleninic acid • Hydroxy Perhydroxy Selenane Davis, F. A.; Reddy, R. T. J. Org. Chem. 1992, 57, 2599-2606.

  10. Baeyer-Villiger Reaction Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  11. Baeyer-Villiger Reaction, Perseleninic Acids Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  12. Catalytic Baeyer-Villiger Reaction Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  13. Catalytic Baeyer-Villiger Reaction ten Brink, G.-J.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66, 2429.

  14. Catalytic Baeyer-Villiger Reaction • C3° > C2° > Bn > Ar/H* > C1° > Me • CF3CH2OH, 20 °C • Hydrolysis might be an issue • Important substituent effect ten Brink, G.-J.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66, 2429.

  15. Seleninic Acid Epoxidation • Pioneer work by Sharpless Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689-1697.

  16. Seleninic Acid Epoxidation • Pioneer work by Sharpless Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689-1697.

  17. Seleninic Acid Epoxidation • DCM or trifluoroethanol • Recyclable perfluorinated solvent • 30 % H2O2 causes emulsions • Dihydroxylation • NaOAc increase yields Betzemeier, B.; Lhermitte, F.; Knochel, P. Synlett1999, 489. Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  18. Seleninic Acid Dihydroxylation Sheldon, R. A. et al. J. Chem. Soc., Perkin Trans. 12001, 224. Santoro, S.; Santi, C.; Sabatini, M.; Testaferri, L.; Tiecco, M. Adv. Synth. Catal. 2008, 350, 2881-2884.

  19. Sequential Selenylation-Desenylation Santi, C. Et al. Chem. Eur. J. 2002, i, 1118. Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.

  20. Sequential Selenylation-Desenylation Santi, C. Et al. Chem. Eur. J. 2002, i, 1118. Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.

  21. Sequential Selenylation-Desenylation Santi, C. Et al. Chem. Eur. J. 2002, i, 1118. Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.

  22. Alkyne Oxidation Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.

  23. Alkyne Oxidation Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.

  24. Alkyne Oxidation Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.

  25. Alcohol Oxidation van derToorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.

  26. Alcohol Oxidation • Excess of TBHP is to be avoided • Presence of water decrease the selectivity • Preactivation of the catalyst shortens reaction time van derToorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.

  27. Alcohol Oxidation van derToorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.

  28. Alcohol Oxidation Ehara, H.; Noguchi, M.; Sayama, S.; Onami, T. J. Chem. Soc., Perkin Trans. 12000, 1429.

  29. Allylic Oxidation of Alkene Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777.

  30. Allylic Oxidation of Alkene • Iodoxybenzene (H2O2 less selective) • Electron-rich alkenes preferentially • Stable catalyst • Diselenide is recovered after Na2S2O5 quench(86 - 92%) Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777.

  31. Allylic Oxidation of Alkene • Oxidation on the more highly substituted side • Endocyclic oxidation for 1-substituted cyclohexene • krel: CH2 > CH3 > CH • Follows Bredt’s rule Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777. Smith, M. B. Organic Synthesis; McGraw-Hill: Boston, MA, 2002; pp. 273-275.

  32. Imine Oxidation, Catalytic Hydroxylation Brodsky, B. H.; Du Bois, J. J. Am. Chem. Soc.2005, 127, 15391.

  33. Aniline Oxidation Priewisch, B.; Rück-Braun, K. J. Org. Chem. 2005, 70, 2350-2352. Zhao, D.; Johansson, M.; Bäckvall, J.-E. Eur. J. Org. Chem. 2007, 4431.

  34. Oxidation of Bromide Salts • Br2, Br3+, HOBr • Seleninic acid electron rich reacts faster Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  35. Oxidation of Bromide Salts, Seleninic Acids • Unknown brominating species • Electron donating group acceleration Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  36. Oxidation of Bromide Salts, Selenoxide Goodman, M. A.; Detty, M. R. Organomet.2004, 23, 3016.

  37. Oxidation of Bromide Salts, Seleninic Acid Drake, M. D.; Bateman, M. A.; Detty, M. R. Organomet. 2003, 22, 4158.

  38. Disulfide Formation • Gluthathione peroxidase (GPx) • Selenoenzyme (L-selenocysteine) • Reactive oxygen species • Neurodegenerative disease (Parkinson, Alzheimer), physiological and inflammatory processes. • Chalcogen-based catalytic antioxidants Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  39. GPx Activity Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  40. Catlytic Reduction of Enones Tian, F.; Lu, S. Synlett 2004, 1953.

  41. Catalytic Disulfide Formation Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Seleniumand Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

  42. Diethyl Zinc Addition to Aldehydes Santi, C.; Wirth, T. Tetrahedron: Asym.1999, 10, 1019-1023. Wirth, T. Tetrahedron Lett.1995, 36, 7849-7852.

  43. Diethyl Zinc Addition to Aldehydes Santi, C.; Wirth, T. Tetrahedron: Asym.1999, 10, 1019-1023. Wirth, T. Tetrahedron Lett.1995, 36, 7849-7852.

  44. Diethyl Zinc Addition to Aldehydes Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality2008, 20, 839-845.

  45. Diethyl Zinc Addition to Enones Shi, M.; Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507-5516.

  46. Diethyl Zinc Addition to Enones Shi, M.; Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507-5516.

  47. Malonate Alkylation Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality 2008, 20, 839.

  48. Malonate Alkylation Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality 2008, 20, 839.

  49. Conclusion • Selenium compounds are very versatile catalysts • Different oxidation state allows completely different reaction pathways • Little work as been focusing on their strong electron donating properties as a ligand • Little success in achieving stereoselective reactions with catalytic amount of enantioenriched organoselenium • Developpement towards its industrial use rather than fine chemistry

More Related