1 / 19

Construções Lógico –Matemáticas – Aula 01

Construções Lógico –Matemáticas – Aula 01. IMES – Fafica Curso de Pedagogia – 2º Ano Prof. M.S.c . Fabricio Eduardo Ferreira fabricio@fafica.br. Objetivo. Orientar estratégias voltadas à didática lúdica, de forma a facilitar a aquisição de conceitos cognitivos, afetivos e sociais.

gale
Download Presentation

Construções Lógico –Matemáticas – Aula 01

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Construções Lógico –Matemáticas – Aula 01 IMES – Fafica Curso de Pedagogia – 2º Ano Prof. M.S.c. Fabricio Eduardo Ferreira fabricio@fafica.br

  2. Objetivo • Orientar estratégias voltadas à didática lúdica, de forma a facilitar a aquisição de conceitos cognitivos, afetivos e sociais. • Instrumentar uma aprendizagem mais significativa no campo do raciocínio lógico–matemático na Educação Infantil e séries iniciais do E. F.. • Favorecer o exercício da criatividade e criar uma memória lúdica.

  3. Programa Unidade 1: Conhecimento lógico–matemático 1.1 O desenvolvimento do raciocínio lógico–matemático segundo Piaget 1.2 Classificação 1.3 Pertinência e inclusão 1.4 Blocos lógicos Unidade 2: A construção do número 2.1 Objetivos para ensinar números 2.2 Simbolização 2.3 Sequências e séries 2.4 Atividades com dominós 2.5 Correspondência 2.6 Barras Cuisenare

  4. Programa Unidade 3: Sistema de Numeração 3.1 Histórico do Sistema de Numeração 3.2 Base de sistema de numeração 3.3 Sistema de numeração decimal 3.4 Material dourado Unidade 4: Jogos e desafios 4.1 Os jogos e a construção do conhecimento 4.2 Construção de jogos Unidade 5: Resolução de problemas 5.1 Jogos de Boole 5.2 Problemas de Lógica

  5. Bibliografia

  6. Jean Piaget (1896 – 1980) • O mais influente pensador no campo da Educação durante a segunda metade do século XX. • Não existe método de Piaget para educar. • Nunca foi pedagogo, era biólogo utilizando a ciência para observar o processo de aquisição do conhecimento no ser humano, particularmente na criança. • Criou um campo chamado epistemologia genética, ou seja, uma teoria do conhecimento centrada no desenvolvimento natural da criança. • Vem de Piaget a ideia de que o aprendizado é construído pelo aluno, inaugurando a corrente construtivista. • Com Piaget, fica claro que as crianças não raciocinam como os adultos, inserindo gradualmente regras, valores e símbolos através da assimilação e acomodação (exemplo da ave como animal voador).

  7. Os quatro estágios de desenvolvimento cognitivo

  8. Constance Kamii • Natural de Genebra (Suíça); • Filha de pais japoneses viveu no Japão até os 18 anos; • Bacharelou-se em Sociologia em 1955 nos Estados Unidos; • Possui Mestrado em Educação (1957) e Doutorado em Educação e Psicologia (1965) ambos pela Universidade de Michigan; • Aluna e colaboradora de Jean Piaget fez diversos cursos de Pós-Doutoramento na Suíça e Estados Unidos ligados à epistemologia genética; • Atualmente é professora na Universidade do Alabama, EUA.

  9. Introdução O que é “conservar o número”? Conservar o número significa pensar que a quantidade continua a mesma quando o arranjo espacial dos objetos for modificado. Método (Inhelder, Sinclair e Bovet, 1974) Materiais: 20 fichas vermelhas e 20 fichas azuis

  10. Igualdade Coloque tantas fichas vermelhas como eu coloquei as azuis ...

  11. Conservação Existem tantas azuis quantas vermelhas, ou há mais aqui (azul) ou mais aqui (vermelha)? Como é que você sabe?

  12. Contra–argumentação (1) As duas fileiras têm a mesma quantidade. Veja esta fileira (vermelha) é mais comprida. Uma outra criança disse que há mais fichas nesta fileira porque ela é mais comprida. Quem está certo, você ou a outra criança?

  13. Contra–argumentação (2) A fileira de baixo (vermelha) possui mais fichas. Mas você não se lembra de antes? Nós colocamos uma ficha vermelha em frente de cada azul. A outra criança disse que havia a mesma quantidade de vermelhas e azuis. Quem você acha que está certo, você ou a outra criança?

  14. Quotidade Conte as fichas azuis. Quantas vermelhas você acha que existem? Você pode adivinhar sem contar? Como é que você sabe?

  15. Níveis No Nível I a criança não consegue fazer um conjunto com o mesmo número. Logo é desnecessário dizer que ela ainda não pode conservar a igualdade de dois conjuntos.

  16. Nível I Quando as crianças ainda não construíram o início da estrutura mental do número elas usam o que lhes parece o melhor critério.

  17. Nível II No Nível II, que se encontra entre quatro e cinco anos de idade, a criança consegue fazer um conjunto com o mesmo número, mas não consegue conservar a igualdade. Como é que você sabe? Tem mais vermelhas porque as azuis estão todas espremidas.

  18. Nível III As crianças do Nível III são conservadoras. Dão respostas corretas a todas as perguntas, não sendo confundidas por contra-argumentações. Existem tantas azuis quantas vermelhas porque já era assim muito antes, e nós não retiramos nada, elas só estavam espremidas. (Argumento da identidade) Aqui as vermelhas estão numa fileira comprida, mas há espaço entre as fichas azuis, por isso dá na mesma. (Argumento da compensação) Nós podíamos colocar todas as vermelhas do jeito que estavam antes, por isso não há mais azuis ou mais vermelhas. (Argumento da reversibilidade)

  19. Para Refletir • Piaget foi o maior educador da segunda metade do século XX. Você concorda com esta afirmação? Justifique. • O que é epistemologia genética? • O que entende-se por construtivismo? • Quais são os níveis de desenvolvimento cognitivo segundo Piaget? Caracterize-os de acordo com a faixa etária. • Qual a relação do trabalho de Constance Kamii com o trabalho de Jean Piaget? • O que é conservação do número? • Quais são as etapas propostas por Sinclair para verificar a conservação do número em crianças? • Uma criança que encontra-se no nível I é conservadora? Justifique. • Uma criança que encontra-se no nível II é conservadora? Justifique.

More Related