220 likes | 487 Views
4 Plasticidad en estructuras de barras. Cálculo plástico de estructuras Guillermo Rus Carlborg. Índice. Combinación de mecanismos Introducción Descripción Secciones Críticas Número de mecanismos independientes Mecanismos de colapso Mecanismos independientes: de cimbreo y de barra
E N D
4Plasticidad en estructuras de barras Cálculo plástico de estructuras Guillermo Rus Carlborg
Índice • Combinación de mecanismos • Introducción • Descripción • Secciones Críticas • Número de mecanismos independientes • Mecanismos de colapso • Mecanismos independientes: de cimbreo y de barra • Mecanismos combinados • Mecanismos completo, parcial y sobrecompleto Guillermo Rus Carlborg
Conocimientos previos • Plasticidad unidimensional: • Carga-descarga, inversión de signo • Relaciones tensión-deformación • Rótula plástica • PTV • Mecanismo de colapso • Equilibrio + Mecanismo + Plastificación • Teoremas del Mínimo + Máximo + Unicidad • Resistencia de materiales – Vigas • Cálculo de pórticos (e.g. matricial): • Sabemos calcular: Momentos y axiles + Deformada • Dados: Geometría + Condiciones de apoyo + Cargas Guillermo Rus Carlborg
Combinación de mecanismos • Encontrar el mecanismo no es obvio → tanteos • Aprovechamos Th. mínimo: estimaciones de λ≥λc • Mecanismo: en número suficiente de rótulas • Cálculo de λusando el equilibrio: PTV • Ejemplo: Guillermo Rus Carlborg
Combinación de mecanismosDescripción • Describir mecanismos independientes • Mecanismo: en número suficiente de rótulas • Calcular en cada uno el factor de carga λ • Equilibrio: PTV • Th. Mínimo: estimaciones de λ≥λc Guillermo Rus Carlborg
Combinación de mecanismosDescripción • Comprobación: Th. Máximo • Calcular la ley de momentos para λ mínimo • Equilibrio: PTV • Comprobar plastificación: que en ningún punto se sobrepase • Si es así, λ es el real Guillermo Rus Carlborg
Combinación de mecanismosSecciones Críticas • Sólo se pueden formar rótulas en A,B,C,D y E • que es donde la ley de flectores tiene extremos Guillermo Rus Carlborg
Combinación de mecanismosNúmero de mecanismos independientes • Mecanismos = Independientes + Combinados • GHT se puede calcular por el método del árbol: • contar cuántos cortes hay que hacer en la estructura para que no aparezcan bucles cerrados; GHT = Nºcortes x 3 Guillermo Rus Carlborg
Mecanismos válidos de colapsocimbreo (a) • Obsérvese que asumimos pequeños desplazamientos • PTV: Guillermo Rus Carlborg
Mecanismos válidos de colapsode barra (b) • Obsérvese que asumimos pequeños desplazamientos • PTV: Guillermo Rus Carlborg
Mecanismos válidos de colapsocombinados (d)=(a)-(b) • Eliminamos la rótula en D • PTV: • Movimiento antinatural → sabemos que λ >> λcrit Guillermo Rus Carlborg
Mecanismos válidos de colapsocombinados (c)=(a)+(b) • Eliminamos la rótula en B • PTV: Crítico: es el menor Guillermo Rus Carlborg
Mecanismos válidos de colapsoley de flectores • Sabemos que en las rótulas • Falta por conocer • Para ello: • PTV → estado virtual: Guillermo Rus Carlborg
Mecanismos válidos de colapsocompleto, parcial y sobrecompleto • Completo • Nº rótulas = GHT + 1 • Se mueve (mecanismo) toda la estructura • Parcial • Nº rótulas < GHT + 1 • Parte de la estructura permanece isostática → la ley de esfuerzos no es única: depende de la historia • Sobrecompleto • Nº rótulas > GHT + 1 • No se debe analizar: tiene más de 1 GDL Guillermo Rus Carlborg
Resumen • Combinación de mecanismos • Secciones críticas • NMI • Definir mecanismos independientes + combinados • Th. Mínimo: estimar λ≥λc usando el PTV • Th. Máximo: comprobar • Mecanismos válidos • Completo + Parcial + Sobrecompleto Guillermo Rus Carlborg
Práctica 4 Guillermo Rus Carlborg
Práctica 5 Guillermo Rus Carlborg
Práctica 6 Guillermo Rus Carlborg
Práctica 7 Guillermo Rus Carlborg
Práctica 8 Guillermo Rus Carlborg