810 likes | 1.36k Views
KUKLA DEĞİŞKENLER. Mehmet Vedat PAZARLIOĞLU. Kukla Değişken Nedir?.
E N D
KUKLA DEĞİŞKENLER Mehmet Vedat PAZARLIOĞLU
Kukla Değişken Nedir? Cinsiyet, eğitim seviyesi, meslek, din, ırk, bölge, tabiiyet, savaşlar, grevler, siyasi karışıklıklar (=darbeler), iktisat politikasındaki değişiklikler, depremler, yangın ve benzeri nitel değişkenlerin ekonometrik bir modelde ifade edilme şeklidir.
Kukla Değişkenlerin Modelde Kullanımı • Kukla Değişken/lerin Modelde bağımsız değişken olarak yer alması • Kukla Değişkenin Modelde Bağımlı Değişken olarak yer alması
Bağımsız Kukla Değişkenler • Bir kukla değişkenli modeller (Varyans Analiz Modelleri) • Kukla değişkenlerin ve Sayısal değişkenlerin Birlikte yer aldığı Modeller (Kovaryans Analizi Modeller) • Kukla değişkenlerin karşılıklı olarak birbirini etkilemeleri • Mevsim dalgalanmalarının ölçülmesinde kukla değişkenler • Parçalı Doğrusal Regresyon
Bir kukla değişkenli modeller Yi = a + b Di +ui Yi = Öğretim Üyelerinin Yıllık Maaşları Di = 1 Öğretim Üyesi Erkekse = 0 Diğer Durumlar (yani Kadın Öğretim Üyesi) Varyans Analiz Modelleri (ANOVA) Kadın Öğretim Üyelerinin Ortalama Maaşları: E( Yi|Di = 0 ) = a Erkek Öğretim Üyelerinin Ortalama Maaşları : E ( Yi|Di = 1) = a + b
Bir kukla değişkenli modeller Yi = 18 + 3.28 Di (0.32) (0.44) t (57.74)(7.44) , R2=0.8737
Bir kukla değişkenli modeller Yi = 18 + 3.28 Di (0.32) (0.44) t (57.74)(7.44) , R2=0.8737 Kadın Öğretim Üyelerinin Ortalama Maaşları: E( Yi|Di = 0 ) = 18 Erkek Öğretim Üyelerinin Ortalama Maaşları : E ( Yi|Di = 1) = 18 + 3.28 = 21.28 Erkek ve Kadın Öğretim Üyelerinin Ortalama Maaş Farkı : 3.28
Bir kukla değişkenli modeller 3.28 21.28 18.00 1 0 Yi = 18 + 3.28 Di (0.32) (0.44) t (57.74)(7.44) , R2=0.8737
Kukla değişken ve Sayısal Değişkenli Model Yi = a1 + a2 Di +bXi + ui Yi = Öğretim Üyelerinin Yıllık Maaşları Xi = Öğretim Üyesinin Yıl olarak Tecrübesi Di = 1 Öğretim Üyesi Erkekse = 0 Diğer Durumlar (yani Kadın Öğretim Üyesi) Kadın Öğretim Üyelerinin Ortalama Maaşları : E( Yi|Xi,Di = 0 ) = a1+bXi Erkek Öğretim Üyelerinin Ortalama Maaşları : E ( Yi|Xi,Di = 1) = (a1 + a2 )+bXi
Kukla değişken ve Sayısal Değişkenli Model Yi = 15.051 + 2.239 Di + 0.289 Xi s(b) (0.95) (0.44) (0.09) (t) (15.843) (5.088) (3.211) p (0.000) (0.002) (0.020) R2=0.949
Kukla değişken ve Sayısal Değişkenli Model Yi = 15.051 + 2.239 Di + 0.289 Xi (t) (15.843) (5.088) (3.211) p (0.000) (0.002) (0.020) Kadın Öğretim Üyelerinin Maaş Fonksiyonu: E( Yi|Di = 0 ) = 15.051 + 0.289 Xi Erkek Öğretim Üyelerinin Maaş Fonksiyonu: E( Yi|Di = 1 ) = 15.051 + 2.239 + 0.289 Xi = 17.29 + 0.289 Xi Erkek ve Kadın Öğretim Üyelerinin Ortalama Maaş Farkı : 2.239
Kukla değişken ve Sayısal Değişkenli Model 2.239 17.29 15.051 E( Yi|Di = 0 ) = 15.051 + 0.289 Xi E( Yi|Di = 1 ) = 15.051 + 2.239 + 0.289 Xi = 17.29 + 0.289 Xi
Birden Fazla Kukla Değişkenli Modeller Yi= b1 + b2D2 + b3D3 + b4Xi + ui Yi = Sigara Tüketimi D2 = 1 Sigara Tüketen Erkek D3 = 1 Şehirde oturanların sigara tüketimi = 0 Sigara Tüketen Kadın = 0 Kırsalda oturanların sigara tüketimi Xi = Gelir Kırdaki Kadınların Sigara Tüketimi: E( Yi|D2=0,Yi|D3=0) = b1 + b4Xi Kırdaki Erkeklerin Sigara Tüketimi : E (Yi|D2=1,Yi|D3=0) = b1 + b2D2 + b4Xi Kentteki Kadınların Sigara Tüketimi: E( Yi|D2=0,Yi|D3=1 ) = b1 + b3D3 + b4Xi Kentteki Erkeklerin Sigara Tüketimi: E( Yi|D2=1,Yi|D3=1 ) = b1 + b2D2 + b3D3 + b4Xi
Birden Fazla Kukla Değişkenli Modeller Yi= b1 + b2D2 + b3D3 + b4Xi + ui Yi = Sigara Tüketimi D2 = 1 Sigara Tüketen Erkek D3 = 1 Şehirde oturanların sigara tüketimi = 0 Sigara Tüketen Kadın = 0 Kırsalda oturanların sigara tüketimi Xi = Gelir
1.Sabit Terimlerin Farklı Eğimlerin Eşit olması Yi= a1 + a2Di + bXi + ui Yi = Sigara Tüketimi Di = 1 Sigara Tüketen Erkek = 0 Xi = Gelir E( Yi|Xi,Di = 0 ) = a1+bXi E ( Yi|Xi,Di = 1) = (a1 + a2 )+bXi
Kukla değişken ve Sayısal Değişkenli Model Yi= a1 + a2Di + b2Xi + ui a2 a1+a2 a1
2. Sabit Terimlerin Eşit, Eğimlerin Farklı Olması Hali Yi= a1 + b1Di Xi+ b2Xi + ui Yi = Sigara Tüketimi Di = 1 Sigara Tüketen Erkek = 0 Xi = Gelir E( Yi|Xi,Di = 0 ) = a1+b2Xi E ( Yi|Xi,Di = 1) = a1 + (b1+b2)X i
2. Sabit Terimlerin Eşit, Eğimlerin Farklı Olması Hali Yi= a1 + b1Di Xi+ b2Xi + ui Yi E ( Yi|Xi,Di = 1) = a1 + (b1+b2)X i b1 + b2 ) E( Yi|Xi,Di = 0 ) = a1+b2Xi b2 ) a1 Xi
3. Sabit Terim ve Eğimin İki Sınıf İçin Farklı Olması Yi= a1 + a2 Di+ b1Di Xi+ b2Xi + ui Yi = Sigara Tüketimi Di = 1 Sigara Tüketen Erkek = 0 Xi = Gelir E( Yi|Xi,Di = 0 ) = a1+b2Xi E ( Yi|Xi,Di = 1) = (a1+a1)+ (b1+b2)X i
3. Sabit Terim ve Eğimin İki Sınıf İçin Farklı Olması Yi= a1 + a2 Di+ b1Di Xi+ b2Xi + ui Yi E ( Yi|Xi,Di = 1) = (a1+a1)+ (b1+b2)X i E( Yi|Xi,Di = 0 ) = a1+b2Xi a1+a2 a1 b1+b2 b2 ) ) Xi
Modelin t İstatistiklerinin Değerlendirilmesi Yi= a1 + a2 Di+ b1Di Xi+ b2Xi + ui • a2 ve b1’ün t istatistikleri anlamsızsa iki sınıf sigara tüketim fonksiyonları aynı • 2.a2 ve b1’ün t istatistikleri anlamlıysa iki sınıf sigara tüketim fonksiyonları farklı (3.durum) • a2 ve b1’ün t istatistiklerinden a2 anlamsız ve b1 anlamlıysa sabit terim aynı eğim farklıdır. (2. durum) • 4. a2 ve b1’ün t istatistiklerinden a2 anlamlı ve b1 anlamsızsa sabit terim farklı eğim aynıdır. (1. durum)
İki Sınıf Modellerinin Farklılığının Kukla Değişken Yöntemi İle Testi Yi= a1 + a2 Di+ b1Di Xi+ b2Xi + ui
İki Sınıf Modellerinin Farklılığının Kukla Değişken Yöntemi İle Testi Yi= a1 + a2 Di+ b1Di Xi+ b2Xi + ui
2. CHOW testi ile tüketim fonksiyonlarının farklılığının araştırılması • Üç grup tüketim fonksiyonu tahmin edilir: • H0: Erkek ve kadınlar için tüketim fonk. aynıdır. • H1: Erkek ve kadınlar için tüketim fonk. farklıdır. • Erkek-kadın tüm tüketiciler için tüketim fonksiyonu: HKT=3.162 • Erkekler için tüketim fonksiyonu: HKT=0.2018 • Kadınlar için tüketim fonksiyonu: HKT=1.865 • Ftest = 2.243 Ftab= 5.14 (a=0.05 f1=2 f2=6 sd. lerinde) • H0 kabul
Birden Fazla Kukla Değişkenli Modeller Yi= b1 + b2D2 + b3D3 + b4Xi + ui
BİR MODELDE KUKLA DEĞİŞKENLERİN KARŞILIKLI OLARAK BİRBİRİNİ ETKİLEMELERİ PROBLEMİ Şehirde Oturan bir Erkeğin Tüketim Farkı Şehirde Oturanların Tüketim Farkı Erkeğin Tüketim Farkı
Birden Fazla Kukla Değişkenli Modeller Yi= b1 + b2D2 + b3D3 + b4D2D3 + b5Xi + ui Yi= b1 + b5Xi Yi= b1 + b2D2 + b5Xi Yi= b1 + b3D3 + b5Xi Yi= b1 + b2D2 + b3D3 + b4D2D3 + b5Xi
MEVSİM DALGALANMALARININ ETKİSİNİN ARINDIRILMASINDA KUKLA DEĞİŞKENLERDEN FAYDALANMA
MEVSİM DALGALANMALARININ ETKİSİNİN ARINDIRILMASINDA KUKLA DEĞİŞKENLERDEN FAYDALANMA Dependent Variable: Kar Variable Coefficient Std. Error t-Statistic Prob. C 6688.363 1711.366 3.90820 0.0009 D2 1322.892 638.4745 2.071957 0.0521 D3 -217.8054 632.2552 -0.344490 0.7343 D4 183.8564 654.2925 0.281000 0.7817 Satış 0.038246 0.011481 3.331281 0.0035 R2=0.525494 İstatistiki olarak anlamsız
MEVSİM DALGALANMALARININ ETKİSİNİN ARINDIRILMASINDA KUKLA DEĞİŞKENLERDEN FAYDALANMA Dependent Variable: Kar Sample: 1965:1 1970:4 VariableCoefficient Std. Error t-Statistic Prob. C 6515.581 1623.083 4.014323 0.0006 D2 1331.352 493.0214 2.700395 0.0134 Satış 0.039310 0.010575 3.717315 0.0013 R2 = 0.515460 Mevsim dalgalanmalarının etkisinde
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Parçalı Doğrusal Regresyon Y Bir sigorta şirketi satış temsilcilerinin belli bir satış hacmini geçmesi durumunda çalışanlarına komisyon ödemektedir. Şirket içerisinde gerçekleştirilen satış komisyon ücretleri belli bir satış hacmi(X*) eşik düzeyine kadar doğrusal artmakta ve bu eşik düzeyinden sonra ise daha dik bir oranla satışlarla doğrusal olarak arttığı varsayılmaktadır. Bu durumda I ve II olarak numaralandırılmış iki parçadan oluşan parçalı doğrusal regresyona ve eşik düzeyinde eğimin değiştiği komisyon fonksiyonuna sahip olmuş oluruz. II Satış Komisyonları I X* X
Parçalı Doğrusal Regresyon • Y • • • • • • • • • • • • • • • • • • • • • Satış Komisyonları • • • • • • • • • • • • • • • • • X Satışlar Yi= a1 + b1Xi + b2 (Xi-X*)Di+ui Yi= Satış Komisyonları Xi= Satış Miktarı X*= Satışlarda Prim Eşik Değeri D= 1 Eğer Xi > X* = 0 Eğer Xi < X* X* E(Yi| Di =0,Xi, X*)= a1 +b1 Xi E(Yi| Di =1,Xi, X*)= a1 - b2X* +(b1+ b2)Xi
Parçalı Doğrusal Regresyon Y Satış Komisyonları X Satışlar b1+b2 1 b1 1 a1 X* a1-b2X*
Örnek Dependent Variable: TC Included observations: 10 Variable Coefficient Std. Error t-Statistic Prob. C -145.7167 176.7341 -0.824496 0.4368 Q 0.279126 0.046008 6.066877 0.0005 (Q-5500)*DI 0.094500 0.082552 1.144727 0.2899 R2=0.973706 F-statistic= 129.6078 [0.000003] Bir şirket satış temsilcilerinin belli bir satış hacmini geçmesi durumunda çalışanlarına prim ödemektedir. Satışlardaki artışlar prim değerini arttırmamaktadır. İstatistiki olarak anlamsız H0: Satışlardaki artışlar prim değerini arttırmamaktadır. H1: Satışlardaki artışlar prim değerini arttırmaktadır.
ZAMAN SERİSİ VE ÇAPRAZ-KESİT VERİLERİNİN BİRARAYA GETİRİLMESİNDE KUKLA DEĞİŞKENLERİN KULLANIMI UYGULAMA: 1935-1954 yıllarına arasında General Motor, Westinghouse ve General Electric firmalarına ait yatırım (Y), firmanın değeri (X2 ) ve sermaye stoğu (X3) verilerine ait tablo aşağıda verilmiştir.
ZAMAN SERİSİ VE ÇAPRAZ-KESİT VERİLERİNİN BİRARAYA GETİRİLMESİNDE KUKLA DEĞİŞKENLERİN KULLANIMI Firmaların yatırımları arasında fark olup olmadığını inceleyebilmek için de kukla değişkenlerden yararlanabiliriz. Firmaların ilk üç yılına ait veriler ile oluşturulan yeni tablo aşağıdaki gibidir. General Motor(GM), Westinghouse(WE) ve General Electric (GE) yatırım (Y), firmanın değeri (X2 ) ve sermaye stoğu (X3)
ZAMAN SERİSİ VE ÇAPRAZ-KESİT VERİLERİNİN BİRARAYA GETİRİLMESİNDE KUKLA DEĞİŞKENLERİN KULLANIMI GM yatırımlarının diğer firma yatırımlarından sabit terim kadar farklı olduğunu ifade etmektedir.
ZAMAN SERİSİ VE ÇAPRAZ-KESİT VERİLERİNİN BİRARAYA GETİRİLMESİNDE KUKLA DEĞİŞKENLERİN KULLANIMI Dependent Variable: Y Method: Least Squares Included observations: 60 Variable Coefficient Std. Error t-Statistic Prob. C -61.80754 23.79039 -2.598004 0.0120 X2 0.038311 0.016752 2.286884 0.0260 X3 0.347303 0.032048 10.83683 0.0000 DI 278.5911 51.74338 5.384091 0.0000 R-squared 0.924866 Mean dependent var 251.067 Adjusted R-squared 0.920841 S.D. dependent var 311.6501 S.E. of regression 87.68352 Akaike info criterion 11.84969 Sum squared resid 430550.4 Schwarz criterion 11.9893 Log likelihood -351.4906 F-statistic 229.7778 Durbin-Watson stat 0.502776 Prob(F-statistic) 0.000000 İstatistiksel olarak anlamlı
DATA7-19 1960-1988 yılları arasında Türkiye’deki Sigara Tüketimi Q Yetişkinlerin sigara tüketim miktarı(kg), Range 1.86 - 2.723. Y GNP(1968) TL, Range 2560 - 5723. P Türkiye’deki sigara fiyatları Range 1.361 - 3.968. ED1 Kayıtlı ortaokul ve lise mezunu nüfus oranı(12-17 yaş) Range 0.112 - 0.451. ED2 Kayıtlı üniversite mezunu oranı (20-24) Range 0.026 - 0.095. D82 = 1 , 1982 ve sonrası D86 = 1 , 1986 ve sonrası
Dependent Variable: Q Sample: 1960 1988 Included observations: 29 Variable Coefficient Std. Error t-Statistic Prob. P -0.097291 0.079389 -1.225493 0.2340 ED2 -5.547295 2.679248 -2.07046 0.0509 ED1 -2.994166 2.708828 -1.105336 0.2815 D86 -0.262700 0.090825 -2.89238 0.0087 D82 -0.288739 0.083649 -3.451774 0.0024 Y 0.000762 0.000190 4.009205 0.0006 C 5.1139345 0.34132 0.101585 0.9200 Katsayılar istatistiksel olarak anlamsız
Dependent Variable: Q Method: Least Squares Sample: 1960 1988 Included observations: 29 Variable Coefficient Std. Error t-Statistic Prob. ED2 -6.455259 2.724204 -2.369595 0.0266 D86 -0.351822 0.078985 -4.454297 0.0002 D82 -0.269429 0.084743 -3.179385 0.0042 Y 0.000672 0.000170 3.945228 0.0006 C 58.18878 33.26618 1.749187 0.0936
DATA7-2 Belirli bir şirkette çalışan 49 kişinin istihdam durumu ve ücretleri WAGE = Aylık Ücret (Range 981 - 3833) EDUC = 8 yıllık eğitimden sonraki sahip olunan eğitim seviyesi(Range 1 - 11) EXPER =Şirkette çalışma süresi(Range 1 - 23) AGE = Yaş (25 - 64) GENDER = 1, Erkek ise; 0 kadın ise RACE = 1, beyaz ise; 0 diğerleri CLERICAL = 1 büro memuru ise, 0 diğerleri MAINT = 1 bakım işlerinde çalışıyor ise; 0 diğerleri CRAFTS =1,usta ise; 0 diğerleri Temel sınıf Profesyonel meslek grupları.
Dependent Variable: WAGE Method: Least Squares Included observations: 49 Variable CoefficientStd. Error t-Statistic Prob. C 1637.202 263.6726 6.209224 0.0000 EDUC 49.33178 27.99678 1.762052 0.0855 EXPER 27.29509 9.488883 2.876533 0.0064 GENDER 473.6966 152.4818 3.106578 0.0034 RACE 207.0888 130.4491 1.587506 0.1201 CLERICAL-946.7380 174.6505 -5.420758 0.0000 MAINT -1053.424 203.4297 -5.178320 0.0000 CRAFTS -708.8822176.0507 -4.026580 0.0002 R-squared 0.737516 Mean dependent var 1820.204 Adjusted R-squared 0.692702 S.D. dependent var 648.2687 S.E. of regression 359.3643 Akaike info criterion 14.75483 Sum squared resid 5294850. Schwarz criterion 15.06370 Log likelihood -353.4934 F-statistic 16.45717 Durbin-Watson stat 2.107977 Prob(F-statistic) 0.000000
DATA 7-9 1985 yılında koleje giriş yapan öğrencilerin ilk yıl başarılarını göstermekte colgpa = 1986 sonbaharındaki ortalamaları (Range 0.85 - 3.97) hsgpa = Lise GPA (Range 2.29 - 4.5) vsat = Sözel derecesi (Range 200 - 700) msat = Sayısalderecesi (Range 330 - 770) dsci = 1 Bilim dalı için, 0 diğerleri dsoc = 1 Sosyal bilim dallı için, 0 diğerleri dhum = 1 Beşeri bilimdalı için 0 diğerleri darts = 1 Sanat dalı için, 0 diğerleri dcam = 1 Öğrenci kampüste yaşıyorsa, 0 diğerleri dpub = 1 Genel lise mezunu ise, 0 diğerleri
Dependent Variable: COLGPA Method: Least Squares Sample: 1 427 Included observations: 427 Variable Coefficient Std. Errort-Statistic Prob. C 0.367296 0.2243021.637506 0.1023 HSGPA 0.4059140.0634186.400630 0.0000 VSAT 0.000726 0.000290 2.503907 0.0127 MSAT 0.001086 0.000303 3.586609 0.0004 DSCI -0.027323 0.057319 -0.476673 0.6338 DSOC 0.056148 0.072778 0.7714940.4409 DHUM -0.004059 0.141771-0.028632 0.9772 DARTS 0.228650 0.1889211.210294 0.2269 DCAM -0.040705 0.052162 -0.780362 0.4356 DPUB 0.029403 0.063040 0.466416 0.6412 Katsayılar istatistiki olarak anlamsız
Dependent Variable: COLGPA Variable Coefficient Std. Error t-Statistic Prob. C 0.423249 0.219749 1.926053 0.0548 HSGPA 0.398349 0.060586 6.574882 0.0000 VSAT 0.000737 0.000281 2.627361 0.0089 MSAT 0.001015 0.000294 3.457749 0.0006
Bağımlı Kukla Değişkenler Bağımlı değişken özünde iki değer alabiliyorsa yani bir özelliğin varlığı ya da yokluğu söz konusu ise bu durumda bağımlı kukla değişkenler söz konusudur. • Bu durumdaki modelleri tahmin etmek için dört yaklaşım vardır: • -Doğrusal Olasılık Modeli • -Logit Modeli • -Probit Modeli • -Tobit Modeli