280 likes | 376 Views
SGFR: Secure Groupware for First Responders http://cs.uccs.edu/~sgfr/ Contact: chow@cs.uccs.edu A NISSC Sponsored Project. C. Edward Chow (PI) Chip Benight (PI) Ganesh Godavari Department of Computer Science
E N D
SGFR:Secure Groupware for First Respondershttp://cs.uccs.edu/~sgfr/Contact: chow@cs.uccs.eduA NISSC Sponsored Project C. Edward Chow (PI) Chip Benight (PI) Ganesh Godavari Department of Computer Science Part of this work is based on research sponsored by the Air Force Research Laboratory, under agreement number F49620-03-1-0207. it was sponsored by a NISSC summer 2003 grant.
Goal of SGFR • SGFR: Secure Groupware for First Responder: • The goal is to design a framework for enhancing groupware packages such as instant messenger and video conferencing tool, • with security through • scalable group key management (Keystone from UT Austin), and • secure model secure group policy management (Antigone from U. Michigan) • With stress level and tool usage effectiveness evaluation • This is a joint project with Dr. Chip Benight of psychology department. • The enhanced secured groupware will be tested in a field trial with City’s Emergency Response team.
SGFR Features Psychology EvaluationStress Level Tracking Effectiveness of Tool Usage(Keyboard/Mouse Event Tracking,History of Commands, Mistakes, Popup Quiz?) Security Enhanced GroupwareInstant messenger(JabberX) Group Key ManagmentSecure Group Rekeying system(Keystone) Group Communication Server Instant Messaging Server (Jabber)
SGFR System Architecture SGFR Client SGFR Group Key Server SGFR Instant MessengerServer SGFR Client SGFR Client Group key distribution Registration/authentication Sign-in create/join chat groups Encrypt/Decrypt msgs using group key
Associate JabberX client with Keyserver and Jabber server • Users login to the Jabber server • If login successful, the client registers with the Keyserver. • When a user creates/joins a group, the Keyserver gives a key to the client. • When a user leaves the group, the Keyserver generates a new key for the remaining members of the group.
First group key assigned to group User ganesh joining group g1 Second group key assigned to groupWhen a member joined Output of the Keystone Server User ayen joining group g1
Packet captured by Ethereal Packet Sniffer Encrypted “Hello” Surrounded by <body>tag Output of the Jabber server running on a machine
Keystone Registrar Setup • Registrar Setup • R <=> S : using SSL • S => R : registrar key KR, client list Secret key KR is called registrar key. Client list contains the identities and ID numbers of clients that does not contain access control information
Secure Keystone Client Request • Client Registration • C <=> R : using SSL • R => C : IDc, kc • R => S : { IDc, kc} KR Where Kc is client individual key IDc is clients identity number
Request and Reply • A request may contain operations to more than one group • Operations • Join • Leave • Re-synchronize • C => S : {request} kc • S => C : {ack} kc, {ind.rekey}kc
Key Updates • Keyserver distributes new keys using the rekey messages. • Reliable key updates can be done using • TCP • Reliable multicast Transport protocol • Key stone uses UDP over IP multicast for efficient rekey message delivery and Forward Error Correction technique
Re-synchronization • FEC does not provide 100% reliability • Solution 1 • Client request for retransmission of the lost rekey message • Disadvantages • Inefficient when the number of lost rekey is large • Solution 2 • Keystone provides resynchronization mechanism for clients to update their keys incase of message loss.
keyserver Keyserver.c:main() sslInfoInit(&sslInfo, keyFile, certFile, caFile, caPath); sslCTX = sslInit(&sslInfo, 1); if (getSpec(servRec, f) != 0) {…in spec.c..} /* the specification file is processed */ setupKGraph(servRec); setupReqAddr(&(servRec->reqAddr)); // listen for requests for clients setupReqAddr(&(servRec->regReqAddr)); //listen for requests from registrar
Keystone Specification File // 1 group, group-oriented TCP, period 1.0, DES3, RSA global-parameters begin rekey-period: 1.0 encryption: DES3-CBC message-digest: MD5 signature-scheme: RSA key-file: serverkey.rsa request-port: 20002 register-port: 30002 key-tree-degree: 4 access-control: none end group g1 begin rekeying: GROUP-ORIENTED rekey-delivery: TCP-unicast end
k1-9 k123 k456 k789 k1 k2 k3 k4 k5 k6 k7 k8 Key Trees (changed to k1-8) {k1-8}k123 {k1-8}k456 {k1-8}k78 (changed to k78) {k78}k7 {k78}k8 k9 u2 u1 u3 u4 u5 u6 u7 u8 u9 [Wong et al. SIGCOMM ’98, Wallner et al. Internet Draft]
Registrar setup Registrar.c:main() /* connect to keyserver */ sslInfoInit(&sslInfo, keyFile, certFile, caFile, caPath); sslCTX = sslInit(&sslInfo, 1); ssl = sslConnect(sslCTX, ksAddr.sk); /* receive register initialization from keyserver */ msg.size = sslRecv(ssl, msg.msg, msg.max); curr = msg.msg; curr += getMsgHdr(curr, &ver, &type, &size, &seq, &msgSPI, &msgVer); if (type != INIT_REGISTER) { /* error */ } if (sslRecvFile(ssl, cListFilename) != 0) { /* error */ } while (1) { : if (childProcess(sk, ksAddr.sk, regSA, indSA, sslCTX, seqToKS, lockFile, clientAuthInfo)!= 0) : }
Registrar Client Registration Registrar.c:childProcess() ssl = sslAccept(sslCTX, sk); if (cliAuthInfo != NULL) { if ((i = checkClientCert(ssl, cliAuthInfo)) < 0) { /* ERROR */} if (consRegToKS(indSA, seqToKS, ®) != 0) { fprintf(stderr, "ERROR: registration to key server\n"); return -1; } /* sign and encrypt registration info with regSA */ putMsgSize(reg.msg, 0); if (signEncMsgSA(®, regSA) != 0) { return -1; }
Client Setup Protocol.c:initializeclient() sslInfoInit(&sslInfo, keyFile, certFile, caFile, caPath); registerSSL(ksCtx, &sslInfo, ®Addr); registerSSL.c:registerSSL() sslCTX = sslInit(sslInfo, 1); ssl = sslConnect(sslCTX, regAddr->sk); Gchat.c:cmd_join() reqGroups(ksCtx, numGrps, grpName, request); • Where request can be “join”/”leave”/”resyn” getGroupKey(ksCtx, grpName, version)
SSL Initialization void * sslInit(SSLInfo *sslInfo, int verifyPeer) { /* SSL initialization */ SSLeay_add_ssl_algorithms(); SSL_load_error_strings(); if ((sslCTX = SSL_CTX_new(SSLv3_method())) == NULL) { ERR_print_errors_fp(stderr); return NULL; } : : if (verifyPeer) { SSL_CTX_set_verify(sslCTX, SSL_VERIFY_PEER, NULL); } else { SSL_CTX_set_verify(sslCTX, SSL_VERIFY_NONE, NULL); } return ((void *) sslCTX); } /
SSL Server connection void * sslAccept(void *sslCTX_v, int sock) { /* begin of sslAccept() */ SSL_CTX *sslCTX = (SSL_CTX *) sslCTX_v; SSL *ssl; X509 *peerCert; if ((ssl = SSL_new(sslCTX)) == NULL) { fprintf(stderr, "ERROR: no ssl\n"); return NULL; } SSL_set_fd (ssl, sock); if (SSL_accept(ssl) == -1) { ERR_print_errors_fp(stderr); SSL_free(ssl); return NULL; } if (SSL_CTX_get_verify_mode(sslCTX) == SSL_VERIFY_PEER) { if ((peerCert = SSL_get_peer_certificate (ssl)) == NULL) { fprintf(stderr, "ERROR: no peer cert\n"); SSL_free(ssl); return NULL; } } else { fprintf(stderr, "ERROR: ask for account and password\n"); return NULL; } return ((void *) ssl); }
SSL Client connection void * sslConnect(void *sslCTX_v, int sock) { /* begin of sslConnect() */ SSL_CTX *sslCTX = (SSL_CTX *) sslCTX_v; SSL *ssl; X509 *peerCert; if ((ssl = SSL_new (sslCTX)) == NULL) { fprintf(stderr, "ERROR: no ssl\n"); return NULL; } SSL_set_fd (ssl, sock); if (SSL_connect(ssl) == -1) { ERR_print_errors_fp(stderr); SSL_free(ssl); return NULL; } if ((peerCert = SSL_get_peer_certificate (ssl)) == NULL) { fprintf(stderr, "ERROR: no peer cert\n"); SSL_free(ssl); return NULL; } return ((void *) ssl); }
/* check client certificates */ /* return -1 if error or client not found */ int checkClientCert(void *ssl_v, ClientAuthInfo *cliAuthInfo) { SSL *ssl = (SSL *) ssl_v; X509 *peerCert; char peerName[256]; int i, peerNameSize; if ((peerCert = SSL_get_peer_certificate (ssl)) == NULL) { fprintf(stderr, "ERROR: no peer cert\n"); return -1; } X509_NAME_oneline(X509_get_subject_name(peerCert), peerName, sizeof(peerName)); peerNameSize = strlen(peerName)+1; /* got the subject line so compare with the list u want to allow.*/ : : return SUCCESS/FAILURE; } /* end of checkClientCert() */ Access Control List
Encryption CBF int EncryptString (char *in, char *out, unsigned char *key, int plainlen) { int cipherlen, tmplen; unsigned char iv[8] = {1,2,3,4,5,6,7,8}; EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); EVP_EncryptInit(&ctx,EVP_bf_cbc(),key,iv); if (!EVP_EncryptUpdate(&ctx,out,&cipherlen,in,plainlen)) { return -1; } if (!EVP_EncryptFinal(&ctx,out+cipherlen,&tmplen)) { return -1; } cipherlen += tmplen; EVP_CIPHER_CTX_cleanup(&ctx); return cipherlen; }
Decryption CBF int DecryptString(char *in, char *out, unsigned char *key, int cipherlen) { int plainlen, tmplen; unsigned char iv[8] = {1,2,3,4,5,6,7,8}; EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); EVP_DecryptInit(&ctx,EVP_bf_cbc(),key,iv); if (!EVP_DecryptUpdate(&ctx,out,&plainlen,in,cipherlen)) { return -1; } if (!EVP_DecryptFinal(&ctx,out+plainlen,&tmplen)) { return -2; } plainlen += tmplen; EVP_CIPHER_CTX_cleanup(&ctx); return plainlen; }
Testing Results Table 1 time taken for client registration group join, group leave Table 2 time taken for file transfer
Conclusion • A secure group communication software package SGFR v.0 was developed. • Use Digital Certificate to authenticate client access. • Group keys are distributed when members join/leave or based on some time period. • Group key is used to encrypted the messages. • Enhance text-based chat with remote file download and remote display. • Ported the SGFR v.0 to run on handheld devices include PDA running Linux and Sony PalmTop.
Future work • Improve the file transfer capability using Reliable Multicast Transport Protocol. • Improve Keystone’s error handling mechanism between keyserver/registrar and client manager. • Improve Keystone client manager by moving it into socket layer and providing socket layer API between a client manager and data processor. • Integrate with Wireless Sensor Networks and improve security of their operations.