250 likes | 409 Views
Giant resonances and inertia parameters Within the QRPA with the Gogny force in axial symmetry. S.P É RU , J.F. Berger , M. Girod, H. Goutte, N. Pillet. CEA Bruyères-le-Châtel, France sophie.peru-desenfants @cea.fr. Previous work,. HF+RPA calculations in spherical symmetry
E N D
Giant resonances and inertia parameters Within the QRPA with the Gogny force in axial symmetry. S.PÉRU, J.F. Berger, M. Girod, H. Goutte, N. Pillet. CEA Bruyères-le-Châtel, France sophie.peru-desenfants@cea.fr
Previous work, HF+RPA calculations in spherical symmetry for exotic nuclei : 78Ni 100Sn 132Sn 208Pb is taken as a reference
The Coulomb term is important for the dipole response. But it is time computer consuming. The Spin-Orbit term can not be neglected. The calculation is relatively fast.
HFB+QRPA in axial Symmetry Spherical nuclei: 2+1 in O isotopes GMR in 90Zr Deformed nuclei : 24Mg 22Mg 28 Si Inertia parameters : Quadrupole “mass”
Formalism 1°HF+RPA 2°HFB+QRPA b are quasi-particules states (qp). In our approach The effective interactionD1Sis used both in the mean field and in the QRPA matrix. As the axial symmetry is imposed, QRPA state are obtained by Kblocs.
16O AxialQRPA Spherical RPA
Skyrme results from E.Kahn and Nguyen Van Giai, Phys. Lett.B 472 (2000)253.
10 15 20 25 M1 / M0 = 17.89 ± 0.20 MeV D.H.Younblood,H.L.Clark, and Y.-W.Lui, Phys. Rev. Lett.82 ,4 (1999) M1 / M0 = 17.65 MeV
Restoration of rotational symmetry for deformed states We want to calculate: for all QRPA states (K ≤ J) For example : Jπ = 2+ In intrinsic frame Using rotational approximation and relation for 3j symbol
24Mgβ=.51 Jπ=2+
Quadrupole [9-41MeV] HFB+QRPA %EWSR=76.6 ; M1 / M0 = 17.64 MeV Exp. %EWSR= 72 ± 10; M1 / M0=16.9 ± 0.6 MeV Exp. : D.H. Youngblood, Y.-W. Lui, and H.L. Clark, Phys.Rev.C 60 (1999)014304
24Mg ISGMR %EWSR=72 ± 10 M1 / M0=21.0 ± 0.6 MeV [9-41 Mev] %EWSR = 94 M1 / M0= 20.47 MeV D.H. Youngblood, Y.-W. Lui, and H.L. Clark, Phys.Rev.C 60 (1999) 014304
Quadrupole [13-30meV] : 82%EWSR, M1 / M0 = 18.72 MeV
Monopole [13-40 MeV] : 92%EWSR, M1 / M0=20.86 MeV
28Si Monopole D.H. Younboold, Y.-W. Lui, and H.L.Clark, Phys. Rev. C, 65,(2002) 034302 [10-35 MeV] 92% EWSR, M1 / M0 = 21.11 MeV 81 ± 10 % EWSR, M1 / M0 = 21.25 ± 0.38 MeV
28Si Quadrupole M1 /M0 =18.54 ± 0.25 MeV 68 ± 9 % EWSR D.H. Younboold, Y.-W. Lui, and H.L.Clark, Phys. Rev. C, 65, (2002) 034302 [13-35 MeV] 70% EWSR, M1 / M0 = 21.27 MeV [7-35 MeV] 71.5% EWSR, M1 / M0 = 20.49 MeV
Inertia parameters ATDHF "Mass": (a) QRPA (b) Inglis-Belayev Consistent calculations CHFB and QRPA (a)=(c). (c) Constraint HFB
Summary Coulomb and spin-orbit terms have to be taken into account, Effect of the pairing treatment in 2+1 states in QRPA? Relatively good agreement with experimental data for giant resonnances. Fragmented strength for monopole and quadrupole response in deformed nuclei. Inertia parameters are very different from the Inglis-Belayev ones.
Gogny force P is isospin exchange operator P is spin exchange operator