600 likes | 883 Views
Progettazione di Materiali e Processi. Università degli Studi di Trieste Facoltà di Ingegneria Corso di Laurea in Ingegneria Chimica e dei Materiali A.A. 2016-2017. PRODUCT (MATERIALS) AND PROCESS DESIGN. Design, Product, Process
E N D
Progettazione diMateriali e Processi Università degli Studi di Trieste Facoltà di Ingegneria Corso di Laurea in Ingegneria Chimica e dei Materiali A.A. 2016-2017
PRODUCT (MATERIALS) AND PROCESS DESIGN • Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro • Example • Fundamentals • Identification of needs (market; coevolution; trueneed) • Types of design • Design tools • Databases • Analyticaltools • Simulationtools Design process Previousclasses Thiscourse + simulazione di processo, fluidodinamica, impianti; reattori; termodinamica chimica; simulazione molecolare; ceramici e nanostrutturati; polimeri; TFC; Dinamica e controllo dei processi chimici; Chimica industriale; sistemi complessi (reologia); disegno di macchine; gestione industriale; meccanica applicata; metallurgia e corrosione; scienza delle costruzioni; tecnologia meccanica; … • Selection and design of materials and processes (Lughi) • Tools for optimalsystematicselection • Design of materials: case studies (nano, meso, microstructures; hybridmaterials; composites) • Design and optimization of chemicalprocesses (Fermeglia) • Advanced tools and methods(ad-hoc lectures and seminars: FEM, product/processeconomics, Life CycleAssessment, …) • Special topicseminars(IntellectualProperty, productevaluation, materials in industrial design, theory of scenarios, rapidplantassessment, materialselection in engines, design for recycle, refurbish, reuse)
Modalità d’Esame • Per passare l’esame serve aver fatto: • Verifiche ed esercizi(passa/non passa) • Progetto-tesina finale: • Presentazione di un progetto-tesina su uno degli argomenti del corso; tema da concordare con uno dei docenti del corso a scelta dello studente • La tesina viene valutata dal docente che ha seguito la tesina e vale come esame finale • Il voto del progetto-tesina determina il voto dell’esame • L’esame viene registrato con il prof. Lughi
Programma del corso (1) Progettazione e selezione di materiali e processi (4 crediti) - Lughi Introduzione: Materiali come opportunità nel progetto; dati e strumenti per la progettazione; sommario delle principali famiglie di proprietà dei materiali. Selezione dei materiali: Indici dei materiali e indici strutturali; uso dei diagrammi di Ashby; selezione con obiettivi e vincoli multipli; selezione di materiali e forme; materiali ibridi; casi di studio. Utilizzo del programma CES. Cenni alla selezione di processi. Introduzione alla selezione dei materiali con vincoli ambientali. Esempi di design avanzato: metamateriali; bandgapengineering; materiali ibridi
Programma del corso (2) • Pinchanalysis e analisi economica (4 crediti) – Fermeglia/Lughi • Analisi economica di processi chimici. Stima dei costi capitale di apparecchiature e del processo. Stima dei costi di produzione. Costo del lavoro, delle utility, delle materie prime, del trattamento delle scorie. Analisi economica ingegneristica. Investimenti e valore del denaro, interessi, diagramma del flusso di cassa, inflazione e deprezzamento. Analisi di profittabilità: ritorno di investimento, rischio, valutazione di alternative di processo e di apparecchiature. Analisi dei margini di profitto. • Esempio: applicazione al calcolatore (Excel + Aspen+) della valutazione economica di un processo. • Pinchanalysis. Introduzione alle tecniche di pinch. Integrazione di scambiatori di calore e progetto di reti di scambiatori, Diagrammi compositi temperatura entalpia, progetto della rete di scambiatori e dimensionamento dei singoli scambiatori di calorie. Applicazione a processi con scambio di massa: risparmio di acqua e di idrogeno. • Esempio: ottimizzazione al calcolatore (Aspen+) di una rete di scambiatori di calore. • Esempio di design di processi avanzati: CVD
PRODUCT (MATERIALS) AND PROCESS DESIGN • Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro • Example • Fundamentals • Identification of needs (market; coevolution; trueneed) • Types of design • Design tools • Databases • Analyticaltools • Simulationtools Design process
Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro • The art or action of conceiving of and producing a plan or drawing of something before it is made • A plan or drawing produced to show the look and function or workings of a building, garment, or other object before it is made • Decide upon the look and functioning of (a building, garment, or other object), by making a detailed drawing of it • Do or plan (something) with a specific purpose in mind Design • An article or substance that is manufactured or refined for sale • A substance produced during a natural, chemical, or manufacturing process Product • A systematic series of mechanized or chemical operations that are performed in order to produce something Process
Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro • The art or action of conceiving of and producing a plan or drawing of something before it is made • A plan or drawing produced to show the look and function or workings of a building, garment, or other object before it is made • Decide upon the look and functioning of (a building, garment, or other object), by making a detailed drawing of it • Do or plan (something) with a specific purpose in mind Design • An article or substance that is manufactured or refined for sale • A substance produced during a natural, chemical, or manufacturing process Product • A systematic series of mechanized or chemical operations that are performed in order to produce something Process
Product Design (…asseen by an engineer…) Ashby, Jones – Materiali e Design
Aesthetics Associations Perceptions Industrial design Product design Technical design Technical, Industrial, and Product Design Satisfaction Product must be life-enhancing Usability Product must be easy to understand and use Functionality Product must work, be safe, economical
Who, what Context where, when why Product design Whatgives a productitscharacter?
Functionality? Men / Women Children / Elderly Sportsmen / Disabled ... Home / Office Europe / Africa... To fill a basic need To meet an aspiration ... Day / Night Occasionally / All the time... Establishing the context «Intentions»: design according to… User Design for public use Design for women/men Design for elders/children … Economicfactors Design for minimum cost Design for easy assembly Design for mass production … Sustainability Design for the environment Design for recycling Design for biodegradability … Performance Design for minimum mass Design for max.insulation … Who? What ? Where ? When ? Why? Context These steer all decisions that follow -- they set the MOOD
Product “character” Who, what Context where, when why Aesthetics associations Personality perceptions Metals, ceramics Materials polymers, composites Product design Shaping joining Processes surface treatment Biometrics Usability Bio-mechanics Product “physiology” Product “psychology” Whatgives a productitscharacter?
Satis- faction Usability Functionality • Sound technical design • Proper choice of materials • Proper choice of manufacturing process Plenty of tools to do this Technical and industrial design Product must work, be safe and economical
Satis- faction Usability Functionality • Three aspects • Interaction with the human body -- biometrics • Interaction with the mind-- intelligibility • Interaction with the human environment Now much researched Usability («ergonomics») Product must be easy to understand and use
Scale, movement, posture, work height Force (<230 N, lifting), Energy (<230 watts) Attention span Bio-metric Bio-mechanical Physical matching Text, Symbols Embossed keys, knobs Audible signals Visual signals Operation Feedback Information transfer Usability Noise Vibration Illumination Climate Toxicity 30DB < noise level < 80DB Acceleration < 0.2 m/s2 Light 200 - 3000 lumens Temp, humidity within limits No toxicity Environmental disturbance Usability («ergonomics»)
Satis- faction Usability Functionality Industrial Design and satisfaction Product must be life-enhancing, rewarding • Three facets • Aesthetics --appealing to the senses -- sight, hearing, feel, taste, smell • Associations -- what does it remind you of ? What does it suggest ? • Perceptions-- what is your reaction to it ? How does it make you feel ?
Colour, transparency Form Feel, texture Taste, smell Sound Aesthetics The reaction of the 5 senses Wealth (Rolls Royce) Military hardware (Land Rover) Aerospace (many US cars) Plants/animals (VW Beetle) Children’s toys (Smart) Associations What does it remind you of ? Playful -- Silly Responsible -- Irresponsible Feminine – Masculine Rugged -- Threatening And - if you owned it ... Proud -- Disappointed Life-enhancing -- Life diminishing Really cool – Absolute rubbish Perceptions How does it make you feel ? Product personality Product personality
My Parker pens, 8 euros each Parker special edition 3000 euros Product Value A product has a costCthe true cost of manufacture, marketing etc. a pricePthe price at which it is offered to the consumer a valueVwhat the consumer thinks it is worth Do they write 375 times better? Product success requires that C < P < V What determines cost? Technical design, materials, processes, labour What determines price? Cost plus margin What determines value? Both technical and industrial design; -- aesthetics, associations, perceptions
Product maturity and market saturation • Products tend to converge in performance and price • ID allowsdifferentiation, enhanced value Corporate identity • ID creates corporate image • ID creates brand loyalty The environment, in the broadest sense • ID contributes to quality of life Whyis Industrial Design important?
Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro
Cellular structures • Foams • Honeycombs • Triangulated lattices Sandwich structures • Symmetric sandwiches Composites • Unidirectional • Quasi-isotropic • Particulate Function – Material – Shape - Process Many more
Function – Material – Shape - Process MICROSTRUCTURE
Function – Material – Shape - Process NANOSTRUCTURE
Function – Material – Shape - Process HYBRID MATERIALS Combining: • Materials – relate properties to microstructure: controlled nature, scale through alloy design and processing. • Mechanics – accept properties as “given”, optimise the geometry • Textile technology – exploit unique strength and blending properties of fibers
Function – Material – Shape - Process MULTISCALE
PRODUCT (MATERIALS) AND PROCESS DESIGN • Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro • Example • Fundamentals • Identification of needs (market; coevolution; trueneed) • Types of design • Design tools • Databases • Analyticaltools • Simulationtools Design process
Need Concepts Embodiments Levered pull Spring-assisted pull Geared pull Direct pull Need – Concept – Embodiment- Detail
Detail How are those choices made? Need – Concept – Embodiment- Detail Embodiment
PRODUCT (MATERIALS) AND PROCESS DESIGN • Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro • Example • Fundamentals • Identification of needs (market; coevolution; trueneed) • Types of design • Design tools • Databases • Analyticaltools • Simulationtools Design process
IDEA VALUE ? OPPORTUNITY VISION
work, researach IDEA VALUE work, research OPPORTUNITY VISION work, research
work, researach IDEA Product / service VALUE Revenuemodel OPPORTUNITY Market segment work, research VISION work, research
work, researach IDEA Product / service Core team VALUE Revenuemodel Core team OPPORTUNITY Market segment Customers work, research VISION Strategy work, research
work, researach IDEA Product / service Core team Operations VALUE Revenuemodel Core team Intellect. Property OPPORTUNITY Market segment Customers Segmentsize Segment trend Competitors work, research VISION Strategy Mission work, research
work, researach IDEA Product / service Core team Operations Humanresources Organziation VALUE Revenuemodel Core team Intellect. Property Marketing plan Human resources Organization OPPORTUNITY Market segmentidentif. Customers Segmentsize Segment trend Competitors Market Share identific. work, research VISION Strategy Mission Specificobjectives work, research
PRODUCT (MATERIALS) AND PROCESS DESIGN • Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro • Example • Fundamentals • Identification of needs (market; coevolution; trueneed) • Types of design • Design tools • Databases • Analyticaltools • Simulationtools Design process
Design Process • Functional • Solution-neutral • “What”, not “how” NEED • Define specifications • Determine function Structure • Seek working principles • Evaluate and select concepts Concept • Desingtypes: • Original • Adaptive • Variant • Develop layout, scale, form • Model and analyze assemblies • Optimize the functions • Evaluate and select layout Embodiement Iterate • Analyze components in detail • Select processing route • Optimize performance and cost • Prepare detailed drawings Detail PRODUCT SPECIFICATION M. F. Ashby
Design Process: AvailableTools NEED Design Tools Functionmodeling Feasibilitystudies Approximateanalysis Geometricmodeling Simulation Optimizationmethods Costmodeling Componentmodeling Finite ElementAnalysis Concept Embodiement Detail PRODUCT SPECIFICATION M. F. Ashby
Design Process: The materialsselectionpoint of view NEED Material selection OUR FOCUS!! Concept Allmaterials(broadselection, low precision) Embodiement Subset of materials Detail One material (high precision data) PRODUCT SPECIFICATION M. F. Ashby
Productas a technical system Assembly 1 Component 1.1 Component 1.2 Component 1.3 Technical system Assembly 2 Component 2.1 Component 2.2 Component 2.3 Assembly 3 Component 3.1 Component 3.2 Component 3.3 M. F. Ashby
Technical system’s analysis- Systems approach: the concept of function- Technical system Energy Materials Information Function 3 Function 1 Energy Materials Information Function 2 Function 6 Function 4 Function 5 Subsystems M. F. Ashby
Technical system’s analysis- Systems approach: the concept of function – The bottleopenerexample Energy Materials Information Generate Force Energy Materials Information TransmitForce ApplyForceto Cork • Direct Pull • Levered Pull • Geared Pull • DirectPush • LeveredPush • Shaft • Linkage • Gas injection • Screw • Shearblades • Gas pressure M. F. Ashby
Properties FUNCTION relation with properties i.e. material, process, shape Function Shape • EXAMPLES OF FUNCTIONS IN MECHANICAL DESIGN: • Carryload • Transmitload • Transmitheat • Transmitcurrent • Storeenergy • … Material Process
PRODUCT (MATERIALS) AND PROCESS DESIGN • Design, Product, Process • Product Design; Process Design; Product and Process Design • Material, process, shape, properties, function Intro • Example • Fundamentals • Identification of needs (market; coevolution; trueneed) • Types of design • Design tools • Databases • Analyticaltools • Simulationtools Design process • Selection and design of materials and processes (Lughi) • Tools for optimalsystematicselection • Design of materials: case studies (nano, meso, microstructures; hybridmaterials; composites) • Design and optimization of chemicalprocesses (Fermeglia) • Advanced tools and methods(ad-hoc lectures and seminars: FEM, product/processeconomics, Life CycleAssessment, …) • Special topicseminars(IntellectualProperty, productevaluation, materials in industrial design, theory of scenarios, rapidplantassessment, materialselection in engines, design for recycle, refurbish, reuse)