1 / 19

Optical cavity

Revue ThomX mécanique (25/01/2011). Yann Peinaud & Mickael Lacroix (LAL) peinaud@lal.in2p3.fr & lacroix@lal.in2p3.fr. Optical cavity. Summary. Synoptic & Constraints Solutions Motorized table, bumpers / Optical table Vacuum chamber Mirror adjustment system Actuator capsule

gefjun
Download Presentation

Optical cavity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Revue ThomX mécanique (25/01/2011) Yann Peinaud & Mickael Lacroix (LAL) peinaud@lal.in2p3.fr & lacroix@lal.in2p3.fr Optical cavity

  2. Summary • Synoptic & Constraints • Solutions • Motorized table, bumpers / Optical table • Vacuum chamber • Mirror adjustment system • Actuator capsule • Optical chamber • Dîpole chamber • X-ray output • Vacuum load compensation system • Positioning strategy • Not studied yet

  3. y x z Synoptic and constraints • Synoptic • Constraints • Micro positioning of the Waist (+/-10µm on X and Y) • Stability of the positioning • “No vibration” • No misalignment (No load variation) • Vacuum • Low out-gasing materials • Baking at 150°C • Micro positioning of the mirrors ( θx, θy, z ) • Lowest interaction angle • 40mrad of Compton X-ray output • Lowest e- beam perturbation Flat mirror 2 ( θx, θy, z ) Spherical mirror 2 ( θx, θy, z ) Waist e- beam 2100 mm Spherical mirror 1 ( θx, θy, z ) Flat mirror 1 ( θx, θy, z )

  4. y x z Motorized table, bumpers and optical table • Constraints: • Micro positioning of the Waist (+/-10µm on X and Y) • Stability of the positioning • “No vibration” Bumpers Y motion X motion 3 feets with X&Y micro motions + bumpers between the 2 tables (used by Mightylaser at KEK)

  5. Vacuum chamber • Constraints: • Vacuum • Low out-gasing materials • Baking at 150°C Ring dipoles Ring chambers Optical chambers

  6. Vacuum chamber  Mirror adjustment system • Constraints: • Vacuum • Low out-gasing materials • Baking at 150°C • Micro positioning of the mirrors ( θx, θy, z ) • 40mrad of Compton X-ray output MightyLaser (R.Cizeron) ThomX Vacuum prepared actuators θx, θy motion with a cardan solution (flexure hinges) Z motion balls (2 on « v » tracks and 1 on flat track)

  7. Vacuum chamber  Actuator capsule • Constraints: • Vacuum • Low out-gasing materials • Baking at 150°C • Micro positioning of the mirrors ( θx, θy, z ) Spring CF16 flanges Baking tests are planned Micro-actuator Sub-C ceramic plug

  8. Vacuum chamber  Piezo • Constraints: • Vacuum • Low out-gasing materials • Baking at 150°C • Micro positioning of the mirrors ( θx, θy, z ) Not possible High out gasing material Is it really needed in ThomX? Is the electron repetition frequency adjusted on the length of the optical cavity? If it’s the case what will be the range? Sub-C ceramic plug

  9. Vacuum chamber  Optical chamber • Constraints: • Stability of the positioning • No misalignment (No load variation) • Vacuum • Low out-gasing materials • Baking at 150°C • Micro positioning of the mirrors ( θx, θy, z ) Thick socket on 3 feets (with precise positioning) Thick base (40mm) to minimize deformations due to the vacuum

  10. Vacuum chamber  Dipole chamber BPM • Constraints: • Vacuum • Low out-gasing materials • Baking at 150°C • Lowest interaction angle • 40mrad of Compton X-ray output • Lowest e- beam perturbation e- • Slits for laser and X-ray : • R3 x 27mm • R4.5 x 45mm Pumping port e- 40 mrad X-ray

  11. Vacuum chamber  X-ray output • Constraints: • Vacuum • Low out-gasing materials • Baking at 150°C • Lowest interaction angle • 40mrad of Compton X-ray output Tests are planned to place the injection on the opposite side of the X-ray Laser injection (CF 40 window) Cavity diagnostic (CfF40 window) 40 mrad X-ray (CF63 beryllium window)

  12. Vacuum load compensation system • Constraints: • Stability of the positioning • No misalignment (No load variation) • Vacuum • Baking at 150°C • Micro positioning of the mirrors ( θx, θy, z ) Bellow for dilatation Bellows for compensation Translation of 2 mm due to baking at 150°C compensation system pad BPM support (still under study)

  13. Positioning strategy Positioning fingers

  14. Not studied yet • The full integration between cavity and ring • Accoustic isolation & thermalisation (Mightylaser baseline) • Cleanness conservation (Mightylaser baseline)

  15. Back slides

  16. Cavité optique Intégration sur l’anneau • Propriétés : • Angle d’intéraction de 2° • Bon accès aux miroirs • Ne nécessite pas de place dans l’anneau

  17. y x z Synoptique de la cavité optique 4 miroirs • Synoptic • Constraints • Waist micro transversal positioning (+/-10µm) • Micro positioning of the mirrors • θx, θy on each mirrors • Z on spherical mir • Stability of the positioning • “No vibration” • Mirrors alignment under air • UHV • Materials • Atmosphere pressure • baking at 150°C Miroir plan 2 ( θx, θy, z ) Miroir sphérique 2 ( θx, θy, z ) Waist e- beam • Alignement • θx, θy pour chacun des miroirs • Focalisation (taille du waist) • Z sphérique 1 et 2 • Longueur de cavité (fréquence de résonnance) • Z plan 1 et 2 Miroir sphérique 1 ( θx, θy, z ) Miroir plan 1 ( θx, θy, z )

  18. Intégration sur l’anneau y Vanne x Dipôle BPM z Table optique Chambre miroirs Soufflet : - Isolation - Mvt transverse (table X,Y) - Mvt longitudinal (étuvage) Chambre dîpole Pompe ionique Table motorisée en X et Y

  19. Not studied yet • The full integration between cavity and ring • Accoustic isolation & thermalisation (Mightylaser baseline) • Cleanness conservation (Mightylaser baseline)

More Related