160 likes | 195 Views
Developing a Simple ZDD Package. Alan Mishchenko University of California, Berkeley. Outline. Decision diagrams ZDD package Experiment Summary. Decision Diagrams. DDs are a useful data-structure It is a good exercise to build a new DD package
E N D
Developing a Simple ZDD Package Alan Mishchenko University of California, Berkeley
Outline • Decision diagrams • ZDD package • Experiment • Summary
Decision Diagrams • DDs are a useful data-structure • It is a good exercise to build a new DD package • This presentation is based on real code without any simplification • The code can be found athttps://bitbucket.org/alanmi/abc/src/4dc7e5aa7805931d35ba1c310f90f5baed74d859/src/misc/extra/extraUtilPerm.c
Building a DD Package • Define data structures • Consider memory management • Write a procedure for creating a new node • Develop traversal procedures • Debug and clean up the code • Develop and test application code based on the new package
Basic Data Structures typedef struct Abc_ZddObj_ Abc_ZddObj; struct Abc_ZddObj_ { unsigned Var : 31; unsigned Mark : 1; unsigned True; unsigned False; }; typedef struct Abc_ZddEnt_ Abc_ZddEnt; struct Abc_ZddEnt_ { int Arg0; int Arg1; int Arg2; int Res; };
ZDD Manager typedef struct Abc_ZddMan_ Abc_ZddMan; struct Abc_ZddMan_ { int nVars; int nObjs; int nObjsAlloc; int nPermSize; unsigned nUniqueMask; unsigned nCacheMask; int * pUnique; int * pNexts; Abc_ZddEnt * pCache; Abc_ZddObj * pObjs; int nCacheLookups; int nCacheMisses; word nMemory; int * pV2TI; int * pV2TJ; int * pT2V; };
Creating New Node static inline unsigned Abc_ZddHash( int Arg0, int Arg1, int Arg2 ) { return 12582917 *Arg0+ 4256249 *Arg1+ 741457 *Arg2; } static inline int Abc_ZddUniqueCreate( Abc_ZddMan * p, int Var, int True, int False ) { if ( True == 0 ) return False; else { int *q = p->pUnique + (Abc_ZddHash(Var, True, False) & p->nUniqueMask); for ( ; *q; q = p->pNexts + *q ) if ( p->pObjs[*q].Var == Var && p->pObjs[*q].True == True && p->pObjs[*q].False == False ) return *q; assert( p->nObjs < p->nObjsAlloc ); *q = p->nObjs++; p->pObjs[*q].Var = Var; p->pObjs[*q].True = True; p->pObjs[*q].False = False; return *q; } }
Traversal Procedures • Set operations • Union, difference, intersection • Product operations • Dot-product, cross-product • Counting operations • Count the number of nodes and paths • Permutation operations • Transposition, permutation product
ZDD Union int Abc_ZddUnion( Abc_ZddMan * p, int a, int b ) { Abc_ZddObj * A, * B; int r0, r1, r; if ( a == 0 ) return b; if ( b == 0 ) return a; if ( a == b ) return a; if ( a > b ) return Abc_ZddUnion( p, b, a ); if ( (r = Abc_ZddCacheLookup(p, a, b, ABC_ZDD_OPER_UNION)) >= 0 ) return r; A = Abc_ZddNode( p, a ); B = Abc_ZddNode( p, b ); if ( A->Var < B->Var ) r0 = Abc_ZddUnion( p, A->False, b ), r1 = A->True; else if ( A->Var > B->Var ) r0 = Abc_ZddUnion( p, a, B->False ), r1 = B->True; else r0 = Abc_ZddUnion( p, A->False, B->False ), r1 = Abc_ZddUnion( p, A->True, B->True ); r = Abc_ZddUniqueCreate( p, Abc_MinInt(A->Var, B->Var), r1, r0 ); return Abc_ZddCacheInsert( p, a, b, ABC_ZDD_OPER_UNION, r ); }
Experiment • Shin-ichi Minato proposed PiDDs, a ZDD-based data-structure to represent and manipulate permutations • Shin-ichi Minato, "PiDD: A new decision diagram for efficient problem solving in permutation space,“ Proc. SAT’11, pp. 90-104 • One of the applications cited in the paper, is enumeration of reachable states of a simplified Rubik’s cube • Traditional cube is 3x3x3 and has 4.3*10^19 states • http://en.wikipedia.org/wiki/Rubiks_Cube • Simplified cube is 2x2x2 and has only 3,674,160 states • http://en.wikipedia.org/wiki/Pocket_cube • Minato’s ZDD-based implementation takes 207 sec to enumerate states of the simplified cube on a 2.4 GHz Core2Duo PC
Experiment: ZDD-Based Enumeration UC Berkeley, ABC 1.01 (compiled May 14 2014 04:30:19) abc 01> cubeenum -z Enumerating states of 2x2x2 cube. Iter 0 -> 1 Nodes = 0 Used = 2 Time = 0.00 sec Iter 1 -> 10 Nodes = 63 Used = 577 Time = 0.00 sec Iter 2 -> 64 Nodes = 443 Used = 4349 Time = 0.03 sec Iter 3 -> 385 Nodes = 2018 Used = 26654 Time = 0.12 sec Iter 4 -> 2232 Nodes = 7451 Used = 119442 Time = 0.43 sec Iter 5 -> 12224 Nodes = 25178 Used = 490038 Time = 1.07 sec Iter 6 -> 62360 Nodes = 83955 Used = 1919750 Time = 1.77 sec Iter 7 -> 289896 Nodes = 290863 Used = 7182932 Time = 3.16 sec Iter 8 -> 1159968 Nodes = 614845 Used = 25301123 Time = 8.18 sec Iter 9 -> 3047716 Nodes = 585664 Used = 66228369 Time = 20.72 sec Iter 10 -> 3671516 Nodes = 19430 Used = 102292452 Time = 34.28 sec Iter 11 -> 3674160 Nodes = 511 Used = 103545878 Time = 34.80 sec Iter 12 -> 3674160 Nodes = 511 Used = 103566266 Time = 34.81 sec ZDD stats: Var = 276 Obj = 103566266 Alloc = 134217728 Hit = 63996630 Miss = 141768893 Mem = 4608.00 MB
Experiment: Explicit Enumeration UC Berkeley, ABC 1.01 (compiled May 14 2014 04:30:19) abc 01> cubeenum Enumerating states of 2x2x2 cube. Iter 0 -> 1 Time = 0.00 sec Iter 1 -> 10 Time = 0.00 sec Iter 2 -> 64 Time = 0.00 sec Iter 3 -> 385 Time = 0.00 sec Iter 4 -> 2232 Time = 0.01 sec Iter 5 -> 12224 Time = 0.03 sec Iter 6 -> 62360 Time = 0.09 sec Iter 7 -> 289896 Time = 0.18 sec Iter 8 -> 1159968 Time = 0.36 sec Iter 9 -> 3047716 Time = 1.02 sec Iter 10 -> 3671516 Time = 2.44 sec Iter 11 -> 3674160 Time = 2.93 sec Iter 12 -> 3674160 Time = 2.93 sec
Conclusion • Discussed basics of decision diagrams • Proposed a simple ZDD package • Analyzed performance of ZDDs vs explicit method for a state enumeration problem