1.45k likes | 3.35k Views
f osc. f max. slope = K vco. f min. V C. ^. ^. ^. Voltage-Controlled Oscillator (VCO). Desirable characteristics: Monotonic f osc vs. V C characteristic with adequate frequency range Well-defined K vco. +.
E N D
fosc fmax slope = Kvco fmin VC ^ ^ ^ Voltage-Controlled Oscillator (VCO) • Desirable characteristics: • Monotonic fosc vs. VC characteristic with adequate frequency range • Well-defined Kvco + Noise coupling from VC into PLL output is directly proportional to Kvco. Prof. M. Green / U.C. Irvine
Oscillator Design loop gain Barkhausen’s Criterion: If a negative-feedback loop satisfies: then the circuit will oscillate at frequency 0. Prof. M. Green / U.C. Irvine
1 inverter V2 feedback V1 V2 feedback 2 inverters V1 Inverters with Feedback (1) 1 inverter: V1 V2 1 stable equilibrium point 2 inverters: 3 equilibrium points: 2 stable, 1 unstable (latch) V1 V2 Prof. M. Green / U.C. Irvine
Inverters with Feedback (2) 3 inverters forming an oscillator: V2 V1 V2 1 unstable equilibrium point due to phase shift from 3 capacitors V1 Let each inverter have transfer function Loop gain: Applying Barkhausen’s criterion: Prof. M. Green / U.C. Irvine
tp tp tp VA VB VC Ring Oscillator Operation VA tp VB tp VC tp VA Prof. M. Green / U.C. Irvine
Variable Delay Inverters (1) Current-starved inverter: Inverter with variable load capacitance: Vin Vout VC Vin Vout VC Prof. M. Green / U.C. Irvine
ISS R R Vout- Vout+ + VC Vin+ Vin- Vin+ Vin- _ RG RG Ifast Islow Variable Delay Inverters (2) Interpolating inverter: • tp is varied by selecting weighted sum of fast and slow inverter. • Differential inverter operation and differential control voltage • Voltage swing maintained at ISSR independent of VC. Prof. M. Green / U.C. Irvine
Differential Ring Oscillator − + + + + VA VD VC VB VA − − − − + additional inversion (zero-delay) VA tp tp VB VC tp tp VD Use of 4 inverters makes quadrature signals available. VA Prof. M. Green / U.C. Irvine
1 r r Resonance in Oscillation Loop At dc: At resonance: Since Hr(0) < 1, latch-up does not occur. Prof. M. Green / U.C. Irvine
Vin Vout Vout Vin LC VCO L C 2L C C realizes negative resistance Prof. M. Green / U.C. Irvine
Variable Capacitance varactor = variable reactance Cj A. Reverse-biased p-n junction VR + – VR Cg B. MOSFET accumulation capacitance p-channel – VBG + n diffusion in n-well VBG accumulation region inversion region Prof. M. Green / U.C. Irvine
LC VCO Variations IS IS 2L C C 2L 2L C C C C ISS 2L C C Prof. M. Green / U.C. Irvine
1 nH 3.8 108 fF 400 fF 400 fF 108 fF Cg = 108fF 1 nH 3.8 400 fF 400 fF Effect of CML Loading 1. 1. ideal capacitor load 2. 2. CML buffer load Prof. M. Green / U.C. Irvine
CML Buffer Input Admittance (1) where: (note p < z) Substantial parallel loss at high frequencies weakens VCO’s tendency to oscillate Prof. M. Green / U.C. Irvine
CML Buffer Input Admittance (2) Yin magnitude/phase: Yin real part/imaginary part: magnitude imaginary phase real Contributes 2k additional parallel resistance Prof. M. Green / U.C. Irvine
Cg = 108 fF 1 nH 3.8 3.8 nH 400 fF 400 fF CML Buffer Input Admittance (3) 3. CML tuned buffer load imaginary real Contributes negative parallel resistance Prof. M. Green / U.C. Irvine
Cg = 108 fF 1 nH 3.8 3.8 nH 400 fF 400 fF ideal capacitor load CML Buffer Input Admittance (4) CML buffer load Loading VCO with tuned CML buffer allows negative real part at high frequencies more robust oscillation! CML tuned buffer load Prof. M. Green / U.C. Irvine
Differential Control of LC VCO Differential VCO control is preferred to reduce VC noise coupling into PLL output. Prof. M. Green / U.C. Irvine
Oscillator Type Comparison Ring Oscillator LC Oscillator – slower – low Q more jitter generation + Control voltage can be applied differentially + Easier to design; behavior more predictable + Less chip area + faster + high Q less jitter generation – Control voltage applied single-ended – Inductors & varactors make design more difficult and behavior less predictable – More chip area (inductor) Prof. M. Green / U.C. Irvine
PX(x) 1 0.5 x Random Processes (1) Random variable: A quantity X whose value is not exactly known. Probability distribution function PX(x): The probability that a random variable X is less than or equal to a value x. Example 1: Random variable Prof. M. Green / U.C. Irvine
Random Processes (2) x1 x2 PX(x) 1 0.5 x Probability of X within a range is straightforward: If we let x2-x1 become very small … Prof. M. Green / U.C. Irvine
Random Processes (3) Probability density function pX(x): Probability that random variable X lies within the range of x and x+dx. PX(x) pX(x) 1 0.5 x x dx Prof. M. Green / U.C. Irvine
Random Processes (4) Expectation value E[X]: Expected (mean) value of random variable X over a large number of samples. Mean square value E[X2]: Mean value of the square of a random variable X2 over a large number of samples. Variance: Standard deviation: Prof. M. Green / U.C. Irvine
Gaussian Function Provides a good model for the probability density functions of many random phenomena. Can be easily characterized mathematically . Combinations of Gaussian random variables are themselves Gaussian. 2 x Prof. M. Green / U.C. Irvine
Joint Probability (1) Consider 2 random variables: If X and Y are statistically independent (i.e., uncorrelated): Prof. M. Green / U.C. Irvine
Joint Probability (2) Consider sum of 2 random variables: y dy = dz determined by convolution of pX and pY. x dx Prof. M. Green / U.C. Irvine
Joint Probability (3) * Example: Consider the sum of 2 non-Gaussian random processes: Prof. M. Green / U.C. Irvine
Joint Probability (4) * 3 sources combined: Prof. M. Green / U.C. Irvine
Joint Probability (5) * 4 sources combined: Prof. M. Green / U.C. Irvine
Joint Probability (6) Noise sources Central Limit Theorem: Superposition of random variables tends toward normality. Prof. M. Green / U.C. Irvine
Fourier transform of Gaussians: F Recall: F F -1 Variances of sum of random normal processes add. Prof. M. Green / U.C. Irvine
Autocorrelation function RX(t1,t2):Expected value of the product of 2 samples of a random variable at times t1 & t2. For a stationary random process, RX depends only on the time difference for any t Note Power spectral density SX(): SX() given in units of [dBm/Hz] Prof. M. Green / U.C. Irvine
Relationship between spectral density & autocorrelation function: infinite variance (non-physical) Example 1: white noise Prof. M. Green / U.C. Irvine
Example 2: band-limited white noise For parallel RC circuit capacitor voltage noise: x Prof. M. Green / U.C. Irvine
Random Jitter (Time Domain) Experiment: CLK data source RCK DATA CDR (DUT) analyzer Prof. M. Green / U.C. Irvine
trigger Jitter Accumulation (1) Experiment: Observe N cycles of a free-running VCO on an oscilloscope over a long measurement interval using infinite persistence. NT Free-running oscillator output t3 t2 t4 t1 Histogram plots Prof. M. Green / U.C. Irvine
Jitter Accumulation (2) proportional to proportional to 2 Observation: As increases, rms jitter increases. Prof. M. Green / U.C. Irvine
Noise Spectral Density (Frequency Domain) Single-sideband spectral density: Power spectral density of oscillation waveform: Sv(f) 1/f3 region (-30dBc/Hz/decade) 1/f2 region (-20dBc/Hz/decade) fosc f (log scale) fosc+f Ltotal(f) given in units of [dBc/Hz] Ltotalincludes both amplitude and phase noise Prof. M. Green / U.C. Irvine
Noise Analysis of LC VCO (1) noise from resistor + vc C L C L R -R inR _ active circuitry Consider frequencies near resonance: Prof. M. Green / U.C. Irvine
Noise Analysis of LC VCO (2) + Spot noise current from resistor: vc C L inR _ spot noise relative to carrier power Leeson’s formula (taken from measurements): dBc/Hz Where F and1/f3 are empirical parameters. Prof. M. Green / U.C. Irvine
_ Vosc + Oscillator Phase Disturbance ip(t) ip(t) Current impulse q/t ip(t) t t Vosc(t) Vosc(t) Vosc jumps by q/C • Effect of electrical noise on oscillator phase noise is time-variant. • Current impulse results in step phase change (i.e., an integration). • current-to-phase transfer function is proportional to 1/s Prof. M. Green / U.C. Irvine
change in phase charge in impulse (normalized to signal amplitude) Example 1: sine wave Example 2: square wave t t Impulse Sensitivity Function (1) The phase response for a particular noise source can be determined at each point over the oscillation waveform. Impulse sensitivity function (ISF): Note has same period as Vosc. Prof. M. Green / U.C. Irvine
Recall from network theory: LaPlace transform: Impulse response: time-variant impulse response Recall: ISF convolution integral: can be expressed in terms of Fourier coefficients: from q Impulse Sensitivity Function (2) Prof. M. Green / U.C. Irvine
Impulse Sensitivity Function (3) , m = 0, 1, 2, … Case 1: Disturbance is sinusoidal: (Any frequency can be expressed in terms of m and .) significant only for m = k negligible Prof. M. Green / U.C. Irvine
Impulse Sensitivity Function (4) For Current-to-phase frequency response: I osc 2osc osc osc 2osc 2osc Prof. M. Green / U.C. Irvine
Impulse Sensitivity Function (5) Case 2: Disturbance is stochastic: MOSFET current noise: A2/Hz thermal noise 1/f noise 1/f noise thermal noise osc 2osc osc 2osc Prof. M. Green / U.C. Irvine
Impulse Sensitivity Function (6) due to thermal noise due to 1/f noise Total phase noise: n osc 2osc Prof. M. Green / U.C. Irvine
Impulse Sensitivity Function (7) noise corner frequency n (dBc/Hz) 1/(3 region: −30 dBc/Hz/decade 1/(2 region: −20 dBc/Hz/decade (log scale) Prof. M. Green / U.C. Irvine
Impulse Sensitivity Function (8) t t is higher will generate more 1/(2 phase noise will generate more 1/(3 phase noise Example 1: sine wave Example 2: square wave Example 3: asymmetric square wave t Prof. M. Green / U.C. Irvine
Impulse Sensitivity Function (9) Effect of current source in LC VCO: Due to symmetry, ISF of this noise source contains only even-order coefficients − c0 and c2 are dominant. _ Noise from current source will contribute to phase noise of differential waveform. Vosc + Prof. M. Green / U.C. Irvine