340 likes | 411 Views
Making Russia Energy Efficient - Energy Efficient Cities and Towns. Making Russia Energy Efficient - Energy Efficient Cities and Towns
E N D
Making Russia Energy Efficient - Energy Efficient Cities and Towns Making Russia Energy Efficient - Energy Efficient Cities and Towns PiloteYekatarinburg: A Cooperation of the Russian Government and Siemens under participation of German and Russian industry, supported by DENA and the German Government Hans-Juergen Wio Vice-President of OOO Siemens in Russia CEO Siemens Energy in Russia and Central Asia June 15, 2010
Energy Efficiency in Russian Federation:One of the most discussed topics «By 2010 Russia should become 40% more energy efficient» July 2008 Д.А. Медведев Президент Российской Федерации Yes - we can fulfill President’s expectations
Making Russia Energy Efficient -Energy Efficient Cities and Towns 1. The Challenge - Sustainable Urban Infrastructure 2. Energy Efficiency Studies 3. Siemens Solutions for Cities 4. Pre-requisites for success in Russia
Megatrends imply significant challenges for city decision makers Compe-titiveness Governance Environment Quality of Life Cities are the growth engines for national economies Sustainable Urban Development Megatrends • Globalization & Urbanization • Cities are competing globallyto make their urban areas attractive to live and to invest in • Global players/trade volume increase • 2030: 60% of population in cities • energy / buildings / mobility / water infrastructure are key • Demographic Change • 65+ generation will nearly double by 2030 (from 7% to 12%) • Need for adequate infrastructuresas well as health- and elder care • Climate Change • Challenge to balance between competitiveness, environment and quality of life • Cities responsible for ~80% GHG • Need for resource efficiency and environmental care
Making Russia Energy Efficient -Energy Efficient Cities and Towns 1. The Challenge - Sustainable Urban Infrastructure 2. Energy Efficiency Studies 3. Siemens Solutions for Cities 4. Pre-requisites for success in Russia
Siemens insights into “how to become energy efficient”, jointly developed with major world cities City sustainability trends & challenges Megacity Challenges Study • Comprehensive analysis based on interviews with over 500 city managers in 25 selected megacities • Urban infrastructure trends and challenges as well as global best practices Green CityIndex Green City Index • Index compares cities across 8 dimensions of sustainability: CO2, Energy, Buildings, Transport, Waste & Land Use, Water, Air, Governance • Started in Europe, rollout in other regions started Implementa-tion studiesin major cities Sustainable urban infrastructure studies / projects • Studies on “how to become a sustainable city”with focus on resource efficiency • Examples: London, Munich, Yekaterinburg Shanghai, Dublin, Trondheim, ...
National level City 3% Examples: • Biofuels • Central electricitysupply (grid mix) Examples: • Public buildings • Hybrid buses • Traffic management 21% 48% 28% Examples: • Lighting in commercial buildings • Cooling displays • Decentral energy (CHP) Examples: • Buildings insulation • Low-emission cars • Efficient household appliances Businesses Individuals London’s own measures combined with effective policies and supervision trigger the changes Siemens Sustainability Study – Example London
Full impact only if private sector incentivized to take initiative Findings Conclusion • Two-third of all CO2- abating technologies pay back their investment • Around 75% of the abatement potential lies in the hands of individuals/ businesses who make technological choices • The total investment required constitutes less than 1% of London’s total economic output until 2025 Average abatement cost EUR/t CO2 Additional invest-ment bn EUR Abatement potential Mt CO2 ! Levers Buildings Insulation 4.5 10.4 Heating efficiency 2.7 -150 1.0 Lighting 1.4 -120 0.9 Appliances 1.3 -190 0.8 Other 0.7 7.3 Transport 1.2 -320 2.4 Higher car efficiency 0.5 – Biofuels 0.3 1,700 5.3 Hybrid passenger cars Hybrid bus 0.2 -240 0.5 Other 0.9 4.3 Energy Energy mix 3.7 1.1 CHP 2.1 4.0
A different look on the results offers a perfect “implementation road map” €<0 Abatement cost – buildings sector EUR/t CO2 – decision maker perspective Residential Public and Commercial 500 400 300 €>0 200 100 Cumulative abatement potential Mt CO2 0 2 4 6 8 10 -100 -200 Lighting Condensing boilers Cooking Solid wall insulation Floor insulation More efficient new builds Office appliances Loft insulation Insulation schools Insulation office Hot water insulation Air conditioning Lighting Windows Display cabinets Optimisation of buildings controls Draught proofing Drives Heat recovery Large cooling Cavity wall insulation Improved heating controls Cooling with renewables Public lighting Small cooling Electric appliances Source: McKinsey & Company
0 Russia develops international partnerships in sphere of energy efficiency 02.10.2008 – St. PetersburgRussian/German agreement on cooperation in sphere if energy efficiency between Merkel/ Medwjedew 16.07.1009 – MunichCeremonial signature of RUDEA cooperation Energy Dialogue Russia – European Union ►►Focus Target: Significant decrease of power resources consumption in Russia IPEEC - International Partnership for Energy Efficiency Cooperation
Energy efficiency potential 2020 in TWh/a 0 62(-79%) 34(-44%) “Energy Efficient City Ekaterinburg” – Russian/German pilot project with Siemens leadership Adoption of "common" technology can save 44% of primary energy by 2020 Most common • Basic wall insulation • 2-plane windows • Efficient drives • Optimization of district heating boilers • … Best • Super insulation • 3-plane windows • Frequency converters • Combined Cycle • Smart Grid • … Baseline primary energy 2020 Efficiency potential – Most common 1) 2020 atMost common Efficiency potential– Best 1) 2020 atBest 1) Derived from difference to most common used / best technology from reference database 2) Combined Cycle Power Plant Source: Team Ekaterinburg
“Energy Efficient City Ekaterinburg” – Russian/German pilot study to be presented in St. Petersburg Strong commitment and support from Government Sverdlovskaja Oblast
5 12 Key levers Implementation would pay back in ~6 years Avg. savingsp.a. 2010–2020cityin mil. EUR Payback city & gas providerw/o capital costs, years Payback city & gas providerwith capital costs, years Effic. potentialin TWh/a of primary energy CAPEX in mil. EUR Expertiseprovided by Key levers Build-ings Better Better 3.8 0.3 0.3 1 41 Heating controls 1) 125 – 3.5 21 2 2,400 115 Wall insulation 2) 1.2 0.4 0.4 3 16 40 Water saving devices 0.5 3.3 4.5 57 18 4 Building automation (e.g. HVAC) 0.5 0.6 0.6 14 9 5 Energy-saving lamps – 0.4 31 14 6 427 Triple-glazed windows 0.2 1.9 2.2 7 6 11 Heat recovery ventilation (HRV) Indus-try 8 0.5 2.3 2.9 15 35 Process improvement., e.g. steel 34 0.4 2.9 3.8 9 98 Frequency converters Trans- port 10 0.5 1.8 2.0 21 12 Traffic management system Energy 11 483 Cogeneration (CHP) 223 5.7 2.2 2.6 12 tbd tbd Insulation of district heating pipes tbd tbd tbd 17.2 TWh primary =>22% points of potential ~3,600 5.8 11.0 1) Shown impact is after Wall Insulation and Triple-glazed windows are implemented Source: Team Ekaterinburg 2) Suggested to implement before levers related to automation of buildings
0 Different parties will benefit from energy saving Half of the energy efficiency potential in Ekaterinburg can be achieved with the 12 levers Two-fold impact Ekaterinburg City: decrease of energy consumption Energy usage reduction Total potential of energy saving: - 44% + • 44% primary energy reduction by applying "common technology" (~50 levers) • Most relevant 12 levers: • Achieve 22% points of reduction potential • Require €3.6 bil. investments Gas suppliers: Export (or economy) of gas becomes available thanks to reduction of power consumption in the city = Total: extra profit from country point of view: 3,1 bln. Euro by 2020 2008 12 Major levers Additional levers 2020 Source: Ekaterinburg team
Rollout of Ekaterinburg's energy efficiency to Russia would generate ~100 billion EUR benefits by 2020 Key 12 levers: Extrapolationto Russia (~60%) • ~€100 bln. investments • ~€100 bln. total positive effect Anadyr Murmansk St. Petersburg Moskau Ekaterin-burg Rostov Jakutsk Wolgo-grad Krasnojarsk Chabarovsk
Making Russia Energy Efficient -Energy Efficient Cities and Towns 1. The Challenge - Sustainable Urban Infrastructure 2. Energy Efficiency Studies 3. Siemens Solutions for Cities 4. Pre-requisites for success in Russia
Existing technology achieves high gains along entire energy conversion chain We cannot solve everything with technology, but we cannot solve anything without Renewables Wind turbines:Efficiency up from 1 MW to 3.6 MW CO2-free energy to the city Example HVDC: China 800 kV, 6.4 GW, 2,000 km Building technologies 30% less energy used through buildingenergy management Traffic management system 30% less downtime with “Progressive traffic signal system“ SIPLINK 12 tons less CO2 emissionsper ship and day by local grid connection Efficient energy production Combined Cycle: from 50% to 60% Steam Power Plant: from 40% to 47% High-voltage urban link Efficient energy transport by HV close to the consumer Industry 40% less energy consumption with variable-speed drives Complete Mobility Higher attractiveness of public transport (reduced waiting and up to 20% fuel savings) Street lighting Potential in Europe: 3.5 million tons less CO2 emissions with LED systems
The world’s most powerful gas turbine – proven efficiency and output 375 MW GT 570 MW CC 40% GT efficiency >60% CC efficiency
Ветроэнергетика РФ сегодня и завтра Разрабатываемые проекты по строительству ВЭС в РФ Законодательная база РФ • 4 ноября 2007: внесены изменения в Федеральный Закон №35 «Об электроэнергетике»; 3 июня 2008: Постановление Правительства РФ №426 «О квалификации генерирующего объекта на основе возобновляемых источников энергии» • 8 января 2009 года: Распоряжение Правительства РФ №1-р, определило основные направления государственной политики в области развития электроэнергетики на основании использования возобновляемых источников энергии. К 2020 году планируется увеличить долю возобновляемых источников в производстве электроэнергии до 4,5 % без учета крупных ГЭС, что составит порядка 80 млрд.кВт час выработки. Технический ветропотенциал РФ • Технический ветропотенциал РФ составляет порядка 1 637 ГВт потенциально возможных установленных мощностей ВЭС • На сегодняшний день в стадии проектирования уже есть проекты по строительству ВЭС в таких регионах как: Краснодарский край, Калмыкия, Волгоград, Калининград, Алтайский край, Дальний Восток. Сценарии развития ветроэнергетики в РФ • Проект государственной программы энергосбережения и повышения энергетической эффективности на период до 2020 года предполагает ввод к 2020 году 4,75 ГВт мощностей на основе энергии ветра • Умеренный сценарий Агентства по прогнозированию балансов и Института энергетической стратегии предполагает ввод к 2020 году 7,5 ГВт мощности ВЭС Современные ВЭУ* Сименс Ожидаемые шаги в части компенсирующих тарифов в РФ • Директор департамента государственной энергетической политики и энергоэффективности Минэнерго РФ г-н Михайлов на конференции REnergy2010 в мае этого года заявил, что из четырех подзаконных актов, требующихся в развитие положений федерального закона «Об электроэнергетике», два приняты. Еще два, представляющие особый интерес для потенциальных инвесторов – еще на стадии разработки и согласований. Ожидается, что до конца этого года РФ будет иметь законодательную базу, обеспечивающую возможность широкомасштабного внедрения проектов возобновляемой энергетики. SWT-2.3 (-82-93-101) SWT-3.0-101 DD SWT-3.6 (-107-120) • Сименс предлагает полный спектр решений для строительства ВЭС. Линейка продукции Сименс постоянно совершенствуются и сегодня мы уже предлагаем ветроустановку нового поколения SWT-3.0 с технологией прямого привода.
Широкомасштабное внедрение ВИЭ* Технический ветропотенциал Дальнего Востока Предпосылки для широкомасштабного использования ВИЭ • Экономия ископаемого топлива • Улучшение экологической обстановки в регионе • Создание новых рабочих мест при строительстве новых мощностей • Создание новых рабочих мест при эксплуатации ветропарков • Дополнительные налоги в региональный бюджет • Рост научно-технического потенциала • Образование молодых специалистов • Технический ветропотенциал всего Дальневосточного административного округа составляет порядка 4 611 млрд.кВт час/год. Ветро - Дизельная Установка Предпосылки для использования Ветро – Дизельных Установок • Повышение надежности энергоснабжения для зон с децентрализованными энергосистемами • Экономия дизельного топлива до 60 % • Снижение затрат на транспортировку дизельного топлива • Увеличение срока службы дизельгенератора на 25-40 % • Снижение вредных выбросов в атмосферу • Для зон с децентрализованным электроснабжением очень интересной представляется идея Ветро - Дизельных Установок * ВИЭ – Возобновляемые Источники Энергии
Cogeneration will save 35% of gas consumption Pilot Ekaterinburg: proposed technology Current technology Boiler Steam power plant Heat Electricity Gas Gas After new technology is implemented CHP Steam power plant Gas saving:35% Heat Electricity Electricity Gas Gas
CHP allows to increase energy efficiency by 35%Leasing finance model reduces investment for cities CHP Pilot: description of proposed technology Technical features: Exhaust pipe Automatic control system and associated equipment • Electrical capacity: 7,5 MW • Heat capacity: 11,7 Gcal/h • Overall efficiency: 85% • Annual electricity generation: 62.000 MWh • Annual heat energy generation: 97.000 Gcal Turbine SGT-300 Exhaust heat boiler Gas savings: 11 mil. m3 p.a. Reduction of CO2 emissions: 23 т/год Increase in energy efficiency: 35% Source: SMART CHP Russia
What we know about buildings … Importance of building automation and a life cycle approach Energy consumption in buildings Siemens building Munich-Perlach • XXX • XXX 100% No BACS* BACS* without EnergyMonitoring 90% 80% BACS* with EnergyMonitoring Energy consumption • Heating energy demand reduced by 34% • Electricity demand reduced by 15% • ROI of less than 2 years 70% BACS* withadditional energyefficiency measures 60% Time Efficient operation requires continuous optimization and monitoring * Building Automation and Control System
OSRAM - Potential of sustainable development Example with home lamp Possibilities in professional lighting OSRAM at glance • More installed power capacities • More burning hours • More investments into equipment • Maintenance of fleets of equipment • MORE POSSIBILITIES FOR • ENERGY SAVING!!! • New technologies • More effective types of light sources • More effective luminaries • SYSTEM approach to SYSTEM of lighting • Easy arithmetical problem: TERMS: • Lamp wattage100W (0,1KW) • Lamp price 15 rub. • Lamp lifespan 1000 hours • 1000 hour of burning per year • 3 rub/KWh QUESTION: • what are annual expenses for lighting coming from? • OSRAM: world‘s principal manufacturer of light sources • Established in 1906 as joint venture of SIEMENS and 2 other companies • 100% SIEMENS owned from 1978 • Market leader in Russia • Large factory in Russia, 1500 employees
Paradigm shift in power grids: The new age of electricity 19th Century 20th Century Early 21st Century End of 21st Century Electrification of society 'Age of Coal' Extensive generation of electrical energy 'Age of fossil fuels' Shift to new age of electricity Challenges require rethinking: 1.) Demographic change 2.) Scarce resources 3.) Climate change The new age of electricity Electricity will be the energy source for most applications in daily life. Integrated energy system with power grid as backbone Unsustainable energy system Unsustainable energy system Sustainable energy system 'Generation and load closely coordinated' Supply island with stochastic load 'Generation follows load' Integrated network, central generation, load stochastically predictable, unidirectional energy flow 'Energy system shifting' Increasingly decentralized, fluctuating generation 'consumer' becoming 'prosumer' 'Load follows generation' Central + decentralized generation, intelligence with ICT1, bi-directional energy flow Fossil energy source,hydro Fossil energy sources, hydro, nuclear Fossil energy sources, hydro, nuclear, biomass, wind, solar Renewable energy sources (solar, wind, hydro, biomass), 'clean' coal, gas, nuclear No environmental concerns Environmental awareness 1) ICT = Information and Communication Technologies
Moscow Ring / Beskudnikovo – Switchgear view 27 ha AIS or 6 ha GIS GIS and AIS, flexible in cost position or environmental ground savings -77%
EnergyManagement DistrictHeating BuildingManagement WaterManagement The Siemens City Management solution approach:Coupling of today’s separated resources supply systems Fromdecoupled individual optimizationtointegrated City Management EnergyManagement DistrictHeating WaterManagement BuildingManagement
Localization contributes to modernization of Russian industry Siemens Energy in Russia is fully localized Gas turbines Compressors High Voltage products I&C components Transformers Wind turbines
Making Russia Energy Efficient -Energy Efficient Cities and Towns 1. The Challenge - Sustainable Urban Infrastructure 2. Energy Efficiency Studies 3. Siemens Solutions for the Cities 4. Pre-requisites for success in Russia
In achieving Russian energy efficiency goals international experience can be leveraged Goals of energy programs worldwide and ways to achieve them Efficiency in Energy Sector Reliable Energy Supply Environmental Protection • The European Union created different directives for its member countries in order to reach goals • Germany: incentive model for renewables (& CHP) • was most successful and served as an example for 47 countries worldwide • can be implemented in Russia due to similar goals (Energy Strategy for 2030) • Russia already created good preconditions for reaching energy efficiency goals: • Liberalization of electricity market in progress • Feed-in tariffs being discussed Increase of renewable energy 3 Diversification of primary energy sources 2 1 Liberalization of energy market Source: European Council Directives (96/93, 2003/54, 2001/77, 2009/28, 2004/8/EC); Russian Energy Strategy for 2030; German Electricity Feed Act (1991); German Renewable Energy Sources Act (2000, 2004, 2009); Renewables Global Status Report 2009 Update
- Cooperation between Russia and Europe canbe optimized Timeline of events 1991 EFA 1) 1998 EMA 2) 2000 REA 3) 2002 CHPA 4) 2008 REHPA 5) 2020 Integrated Energy & Climate Program German goals German Measures GE German Measures Suggested: Transfer of know- ledge and experience 1 2 3 Russiangoals Russian Measures RU 1st stage 2nd stage 3rd stage 2003 Federal law on Electric Power Industry 2009 2015 2020 2030 Energy Strategy for 2030 3) Cogeneration Act 5) Renewable Energy Sources Act 4) Renewable Energies in the Heat Sector Promotion Act6) Federal Tariff Service 1) Electricity Feed Act 2) Energy Management Act Source: TEAM Smart CHP Russia
Prerequisites for successful implementation Beyond technology, there are 4 prerequisites for successful energy efficiency program • Well defined energy efficiency program office at the country level with clearly assigned responsibilities • Targets cascaded from the country level down to regions, cities / towns • Implementation systematic (tools, access to necessary data, clear milestones to reach targets) Implementation systematic • Country-wide defined KPI consistently used across the country • Energy consumption statistics at multiple levels: city, region, country • Transparency of and accessibility to energy consumption and efficiency measures across cities Statistics • Comprehensive energy efficiency stimulus measures (e.g. loan subsidies, attractive tariff structure) • Involvement of key beneficiaries of gas savings (gas providers e.g. Gazprom) • Legally worked out “menu” of financing mechanisms, e.g. Energy Contracting Financing / Legislation Social Mobilization • Advertising geared towards changing consumer behavior • PR campaigns Source: Ekaterinburg Team
Energy Efficiency in Russian Federation:One of the most discussed topics «By 2010 Russia should become 40% more energy efficient» July 2008 Д.А. Медведев Президент Российской Федерации «The key in not to produce something on paper, but actually to do something about it» September 2009 D.A. Medvedev President of the Russian Federation Today’s discussion is a major step towards working on real projects