150 likes | 166 Views
Learn how derivatives influence the shape of a graph through intervals of increase, decrease, and concavity. Discover practical tests and methods to identify local maxima, minima, and inflection points using first and second derivatives. Master the art of sketching graphs and determining points of local extrema using differentiation techniques effectively.
E N D
How derivatives affect the shape of a graph(Section 4.3) Alex Karassev
First and second derivatives • f ′ tells us about intervals of increase and decrease • f ′′ tells us about concavity
First derivative: Intervals of Increase / Decrease
Increasing / Decreasing Slope of tangent line slope > 0 y = f(x) slope < 0 x decr. incr.
Increasing / Decreasing Test Derivative f ′ (x) > 0 y = f(x) f ′ (x) < 0 x decr. incr.
Change of behavior • f can change from increasing to decreasing and vice versa: • at the points of local max/min (i.e. at the critical numbers) • at the points where f is undefined f ′ (x) > 0 y = f(x) f ′ (x) < 0 x decr. incr.
Local max/min: 1st derivative test • Let c bea critical number • How do we determine whether it is loc. min or loc. max or neither? loc. max loc. min. y = f(x) f ′ (x) < 0 f ′ (x) > 0 c incr. decr. x • If f ′ changes from negative to positive at c, it is loc. min. • If f ′ changes from positive to negative at c, it is loc. max. • If f ′ does not change sign at c, it is neither (e.g. f(x) = x3, c =0)
Second derivative: Concavity
Concavity: definition Graph lies above tangent lines: concave upward Graph lies below tangent lines: concave downward
Concavity: example Inflection points y = f(x) down up up down up
Concavity test: use f′′ f′′ (x) < 0 f′′ (x) > 0 Graph lies above tangent lines: concave upward Graph lies below tangent lines: concave downward Inflection points:Numbers c where f′′(c) = 0 are "suspicious" points
Change of concavity • f can change from concave upward to concave downward and vice versa: • at inflection points (check f ′′ (x) = 0) • at the points where f is undefined y = f(x) down up up down up
Local max/min: 2nd derivative test • Suppose f ′ (c) = 0 • How do we determine whether it is loc. min or loc. max or neither? loc. max f ′′ (c) < 0 loc. min. y = f(x) NOTE: tangent line at (c,f(c))is horizontal f ′′ (c) > 0 c x • If f ′′ (c) > 0 the graph lies above the tangent ⇒loc. min. • If f ′′ (c) < 0 the graph lies below the tangent ⇒loc. max. • If f ′′ (c) = 0 the test is inconclusive (use 1st deriv. test instead!)
Comparison of 1st and 2nd derivative tests for local max/min • Second derivative test is faster then 1st derivative test (we need to determine where f′(c) = 0 and then just compute f′′(c) at each such c) • Second derivative test can be generalized on the case of functions of several variables • However, when f′′(c) = 0, the second derivative test is inconclusive (for example, (0,0) is an inflection point for f(x) = x3, while for x4 it is a point of local minimum, and for –x4 it is a point of local maximum)
Examples • Sketch the graph of function y = x4 – 6x2 • Use the second derivative test to find points of local maximum and minimum off(x) = x/(x2+4)