360 likes | 555 Views
QUANTUM INFORMATION: FUTURE OF MICROELECTRONICS? PAWEL HAWRYLAK QUANTUM THEORY GROUP INSTITUTE FOR MICROSTRUCTURAL SCIENCES NATIONAL RESEARCH COUNCIL OF CANADA OTTAWA, K1AOR6,CANADA CANADIAN INSTITUTE FOR ADVANCED RESEARCH NANOELECTRONICS AND PHOTONICS PROGRAMME. WHY QUANTUM INFORMATION:
E N D
QUANTUM INFORMATION: FUTURE OF MICROELECTRONICS? PAWEL HAWRYLAK QUANTUM THEORY GROUP INSTITUTE FOR MICROSTRUCTURAL SCIENCES NATIONAL RESEARCH COUNCIL OF CANADA OTTAWA, K1AOR6,CANADA CANADIAN INSTITUTE FOR ADVANCED RESEARCH NANOELECTRONICS AND PHOTONICS PROGRAMME
WHY QUANTUM INFORMATION: FUTURE OF MICROELECTRONICS? • YET WITH EXISTING TECHNOLOGY MANY PROBLEMS ARE LIKELY TO REMAIN UNSOLVED: • QUANTUM MATERIALS • NANOSCIENCE-MULTISCALE PROBLEMS • DRUG DESIGN AND DISCOVERY • HARD MATHEMATICAL PROBLEMS – FACTORIZATION OF PRIME NUMBERS (SECURITY OF INFORMATION) HENCE QUANTUM HARDWARE CMOS IS A MARVEL OF TECHNOLOGY
QUANTUM THEORY AND QUANTUM INFORMATION QMechanics: EPR, superposition, entanglement, … Materials Science: Correlations,mesoscopics,… Condensed Matter Superfluidity Superconductivity Fractional charge FQHE Mesoscopics, interference Quantum materials ???????????? Quantum information: Quantum computing Quantum cryptography Quantum imaging Quantum sorting …
QUANTUM THEORY AND QUANTUM INFORMATION How Many Configurations? 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 Number of atoms on Earth? bits resources Quantum register |1 1 0 0 1 0 0 1 0 1 0 0 >
Quantum Groups Worldwide QUANTUM THEORY AND QUANTUM INFORMATION abacus – 500 AD – 10 additions / min QUANTUM ABACUS MADE OF HUNDRED BITS IS MORE POWERFUL THAN CLASSICAL ABACUS BUILD OF ALL ATOMS ON EARTH
QUANTUM INFORMATION 101 QUANTUM ALGORITHMS initialize Evolve to final target state 0 T Time t Measure Quantum Bits,Gates Algorithm |0 0 1 1 0 1 > = binary decomposition of number K Spin configuration=|K> QUANTUM COMPUTATION
QUANTUM HARDWARE AND INFORMATION DECOHERENCE QUANTUM CRYPTOGRAPHY QUANTUM ECONOMICS? QUANTUM METROLOGY QUANTUM NMR…… • QUANTUM STATES ARE FRAGILE • ERROR CORRECTION IS POSSIBLE • OVERHEAD IS VERY HIGH SOLUTION: FEW QUBITS EMBEDDED IN CLASSICAL SYSTEMS FIRST APPLICATIONS?
QUANTUM INFORMATION APPLICATIONS FEW QUBITS – EMBEDDED IN CLASSICAL SYSTEMS FIRST APPLICATIONS? QUANTUM ECONOMICS QUANTUM CRYPTOGRAPHY
Quantum Groups Worldwide QUANTUM INFORMATION 101 APPLICATIONS - QUANTUM ECONOMICS HP LABS, PALO ALTO
Quantum Groups Worldwide QUANTUM INFORMATION 101 APPLICATIONS - QUANTUM ECONOMICS “PRISONER DILEMMA” - COOPERATE “C” - DEFECT “D” QUANTUM GAME REMOVES DILEMMA OPTIMIZES PAYOFF Quantum Bidding – 2 Qubits –HP Labs-S.Williams WHY QUANTUM GAMES? • BIDDING, CONFLICT • ONLY FEW PLAYERS • HIGH PAY-OFF • OF INTEREST NOT ONLY TO PHYSICISTS
Quantum Groups Worldwide QUANTUM HARDWARE BUILDING FEW QUBITS IN SOLID STATE QCOMPUTING WITH QDOTS Barenco et al. 1995 Brum PH 1997 Loss DiVincenzo 1998 ELECTRON SPIN NUCLEAR SPIN –NMR SUPERCONDUCTIVE QUBITS ATOM/ION TRAPS ATOM CHIPS LINEAR OPTICS ……. QUANTUM HARDWARE BUILDING FEW QUBITS IN SOLID STATE USING MICROELECTRONICS
NANOSCIENCE WITH SINGLE ELECTRONS TOWARD ELECTRON SPIN BASED QUANTUM COMPUTER IN A FIELD EFFECT TRANSISTOR QComputing with Qdots: Brum&Hawrylak ’97 Loss&DiVincenzo ‘98
ELECTRON SPIN BASED QUANTUM COMPUTER Model of QComputer : interacting qubits S tunable entanglement J Effective qubit local field LOCALISING CONTROLLED NUMBER OF ELECTRONS 1-100 90 nm AlGaAs GaAs DRAIN SOURCE 2D electron gas at GaAs/AlGaAs
NANO SPINTRONICS SINGLE SPIN TRANSISTOR off on source artificial atom drain SINGLE SPIN TRANSISTOR
NANO SPINTRONICS SINGLE SPIN TRANSISTOR ODD NE ODD NE n=2 CURRENT N=18 N=17 N=16 Sachrajda,Ciorga,PH,.. IMS NRC,PRL’02 B
ELECTRON SPIN BASED QUANTUM COMPUTER Model of QComputer : interacting qubits S (7,2) (1,1) (1,0) (5,0) (6,1) (9,4) tunable entanglement J Effective qubit local field D (0,0) (0,1) TUNING TUNELING BARRIER IQPC 1 2 L.Kouwenhoven et al, Delft S.Tarucha et al Tokyo C.Marcus et al, Harvard M.Heiblum et al, Weizman A.Sachrajda,M.Pioro-Ladriere,PH, Ottawa
ELECTRON SPIN BASED QUANTUM COMPUTER TWO QUBITS 0.0 V1 / V (5,4) (1,1) (4,3) (5,5) (4,4) (3,3) (4,5) (3,4) -0.75 (2,3) (1,2) -0.70 +0.30 V2 / V Model of QComputer : interacting qubits S tunable entanglement J Effective qubit local field (1,0) (7,2) (5,0) (6,1) (9,4) (9,5) (8,4) (7,3) (5,1) (6,2) (0,1) (4,0) (8,5) (0,0) (7,4) (6,3) (5,2) (3,0) (4,1) (75) (1,0) (6,4) (5,3) IQPC (2,0) (4,2) (6,5) (3,1) 1 2 (2,1) (N1,N2) = (0,0) 1 mm A.Sachrajda,M.Pioro-Ladriere,PH PRL2003, PRB2005
ELECTRON SPIN BASED QUANTUM COMPUTER TWO QUBITS-WHY TUNABLE J? Model of QComputer : interacting qubits S tunable entanglement J Effective qubit local field (1,0) |10> |01> …. …. J12=0 J12>0 J12>0 J12=0 t=0 t=T SPIN SWAPPING BASIS OF CNOT GATE Loss,DiVincenzo
ELECTRON SPIN BASED QUANTUM COMPUTER COHERENT CODED QUBIT OPERATION Swapping spins Rabi oscillations Quantum Optics on a chip
ELECTRON SPIN BASED QUANTUM COMPUTER THREE QUBITS-TRIPLE QUANTUM DOT -0.25 B A (1,0,0) A (1,1,0) (1,1,1) B V1B(V) (0,1,0) IQPC (0,1,1) 3T A (7,2) N=4 (5,0) (6,1) (0,0,0) S A C B -0.375 N=3 (0,0,1) -0.30 1B 5B 3B (0,1,2) B 0.5mm C 4B 2B V5B(V) -0.25 -0.40 (1,1,1) N=2 V1B(V) N=2 N=1 N=3 -0.385 N=2 -0.39 -0.41 V5B(V) Model of QComputer : interacting qubits S tunable entanglement J Effective qubit local field (1,0) A.Sachrajda,S.Studenikin,L.Gaudreau,A.Kam, M.Korkusinski, PH, PRL2006
ELECTRON SPIN BASED QUANTUM COMPUTER TRIPLE QUANTUM DOT-CODED QUBIT S=1/2 M.Korkusinski, PH,SSC2005 Model of QComputer : interacting qubits S tunable entanglement J Effective qubit local B field CODED QUBIT
ELECTRON SPIN BASED QUANTUM COMPUTER PROBLEMS AND CHALLENGES Model of QComputer : interacting qubits S tunable entanglement J Effective qubit local field (1,0) Single spin – Koppens, Kouwehoven et al,Nature2006 Operation - Pioro-Ladriere, Tarucha et al. Coherent two spin operation, Single coded qubit operation – Petta,…,Marcus - Koppens, …,Kouwehoven Coherent spin manipulation over minutes! - Greilich,Bayer,…Science 2006
ELECTRON SPIN BASED QUANTUM COMPUTER PROBLEMS AND CHALLENGES - DECOHERENCE Model of QComputer : interacting qubits S tunable entanglement J Effective qubit local field (1,0) DECOHERENCE – NUCLEAR SPINS, SO+PHONONS,IMPURITIES SOLUTIONS? MATERIALS WITHOUT NUCLEAR SPIN 2-6, CARBON NANOTUBES, GRAPHENE?
TRIPLE QDOT MOLECULES SPIN, TOPOLOGY, STATISTICS AND E-E CORRELATIONS LOCALIZED VS ITINERANT ELECTRONS HUBBARD MODEL A WINDOW ON QUANTUM MATERIALS: COMPLEX OXIDES WITH TRIANGULAR LATTICE NaxCO2
TRIPLE QDOT MOLECULES SPIN, TOPOLOGY, STATISTICS AND E-E CORRELATIONS S=0 2 2 S=1 1 1 Exchange Vx Super-Exchange S=1 t D~Vx~e^2 D~4t^2/U~1/e^2 2 S=0 2 1 1 Singlet – double occupancy triplet singlet
TRIPLE QDOT MOLECULES SPIN, TOPOLOGY, STATISTICS AND E-E CORRELATIONS 3 3 3 2 2 2 1 1 1 singlet triplet SINGLET GS! TOPOLOGICAL “HUNDS” RULE! SPIN-CHARGE SEPARATION? PH, Korkusinski, SSC2005 S=1 D~t S=0
0V TRIPLE QDOT MOLECULES FILLING LOWEST ELECTRONIC SHELL -2.5V -2.5V -1.1V -1.1V 3t 3t 0V 0V -1V 4e SINGLET 3t Voltage tunable nano-magnet Korkusinski,Puerto,PH ….. PRB2007 3t 2e SINGLET 4e TRIPLET
QUANTUM INFORMATION APPLICATIONS FEW QUBITS – EMBEDDED IN CLASSICAL SYSTEMS FIRST APPLICATIONS? QUANTUM CRYPTOGRAPHY – QUANTUM KEY DISTRIBUTION SINGLE PHOTONS-SECURE-NO CLONING- SHORT DISTANCE ENTANGLED PHOTON PAIRS- QUANTUM REPEATER-LONG DISTANCE
QUANTUM INFORMATION QUANTUM CRYPTOGRAPHY-WHATS NEEDED? • ENABLING TECHNOLOGY • FOR QUANTUM CRYPTOGRAPHY: • SOURCE OF SINGLE PHOTONS ON DEMAND • SOURCE OF ENTANGLED PHOTON PAIRS ENABLING TECHNOLOGY : SELF-ASSEMBLED QUANTUM DOT DEVICES
QUANTUM INFORMATION QUANTUM CRYPTOGRAPHY • QUANTUM DOT TECHNOLOGY REQUIREMENTS • FOR QUANTUM CRYPTOGRAPHY: • EMISSION AT TELECOM WAVELENGTH • -MATERIALS • ENHANCED LIGHT MATTER INTERACTION • -QDOTS IN PHOTONIC CAVITIES • -PRECISE POSITIONING OF QDOTS • ENGINEERING OF LIGHT POLARIZATION • -FULL UNDERSTANDING OF AND ABILITY TO ENGINEER • OPTICAL PROPERTIES OF QDOT
GROWTH AND POSITIONING OF QDOTS EMITTING AT TELECOM WAVELENGTH SiO2 mask InAs dot InP pyramid STRAIN DRIVEN SELF-ASSEMBLY: InAs/GaAs DIRECTED SELF-ASSEMBLY VIA LITHOGRAPHY: InAs/InP at 1.5mm ARTIFICIAL ATOM FACTORY Williams, Poole,…IMS
GROWTH AND POSITIONING OF SINGLE QDOTS GATING OF A SINGLE QDOT M.Reimer,J.Lapointe,P.Poole, R.Williams,…
EXTRACTING SINGLE PHOTONSSINGLE QUANTUM DOT IN A CAVITY InAs dot Tuning Photon Field Inside cavity InP pyramid sa Q>8000 sa POSITIONING DOTS IN E-FIELD MAXIMA Dalacu,Aers,Williams, Poole
QUANTUM INFORMATION QUANTUM CRYPTOGRAPHY ENTANGLED PHOTON PAIRS FROM EXCITON TO BI-EXCITON CASCADE Entangled Photon Pairs From a Semiconductor Quantum Dot, Akopian, Gershoni, Avron, Petroff,…… PRL 2006 SPLITTING OR
QUANTUM INFORMATION QUANTUM CRYPTOGRAPHY-MATERIALS CHALLENGE InAs/InP InAs/GaAs (8,5) Lefebvre,Finnie,IMS NICE,PROOF OF CONCEPT, BUT NOT AT TELECOM WAVELENGTH! ~0.8eV
TOWARD QUANTUM INFORMATION WITH QUANTUM DOTS “Crossing” InAs dot (8,5) InP pyramid