540 likes | 747 Views
Chapter 0. Scientific Method and Measurement. The Method. What organized method do scientists use to solve a problem?. The scientific method Define the problem Make a hypothesis Make observations Record data Review the data Modify hypothesis Retest. The Method.
E N D
Chapter 0 Scientific Method and Measurement
The Method • What organized method do scientists use to solve a problem? • The scientific method • Define the problem • Make a hypothesis • Make observations • Record data • Review the data • Modify hypothesis • Retest
The Method • What is the definition of… • Hypothesis? • Independent Variable? • Dependent Variable? • Control? • Qualitative Data? • Quantitative Data? • A prediction or guess • What you change • What happened/changed • What you keep the same • Non-numerical (ex. Blue) • Numerical (ex. 55 cm)
The Method • Why is it important not to have too many independent variables? • It is impossible to tell which one affected your results • Limit the number of variables • Have lots of controls
Theory vs. Law • What is the main difference between a theory and a law? • A law is a (mathematical) relationship that predicts what happens and is always correct. • A theory is an evolving body of information. It has not been proven correct.
Airplane Challenge • I challenge your team to build a paper airplane that will FLY the farthest distance. • Each team will build three planes. • 3 pieces of paper, 6 paper clips, scissors • Your team will test ONE variable to see which of your three prototypes will work the best.
Airplane Challenge Before you fly! • What is my independent variable? • What is my dependent variable? • What is my first hypothesis? After you fly! • What did I observe after the test flights? • Please answer these questions in your notebook.
Precision vs. Accuracy • What is the difference between precision and accuracy? • Accuracy refers to how close it is to the correct value • Precision refers to how close together a group of measurements are to each other
Precision vs. Accuracy • On the right hand side of your notes, please draw the following targets with the bullet holes.
Precision vs. Accuracy • Label the target that is accurate and precise.
Precision vs. Accuracy • Label the target that is the least precise.
Precision vs. Accuracy • Label the target that is precise and inaccurate.
Practice Problem #1 • An archer shoots three arrows at a target and each land within 1 cm of each other, but none of the arrows are within 30 cm of the center. • Explain whether the archer is precise, accurate, neither or both.
Practice Problem #2 • The table lists the results of temperature measurements of a beaker of boiling water. The temperature of boiling water is 100 °C. • Explain whether each thermometer was accurate, precise, neither or both.
Precision and Measurement • Pick the measuring device that makes the most sense: bar, book or paper clip • Measure the object or area. • Estimate the final value. (ex. 0.5, quarter, 1/3) • Record your measurements in the table.
Precision and Measurement • Which measurement do I feel is the most precise and WHY? • What is one benefit AND one drawback to using a smaller unit of measurement?
Scientific Notation • What is scientific notation? • A shortcut for writing really large or really small numbers • Every number can be represented by a number between 1 and 10 and multiplied by a power of 10
Scientific Notation • How do I do scientific notation? • Put a decimal after the first non-zero number • Count the number of spaces the decimal place moved • If the decimal moved to the left, the exponent is positive and if it moved to the right its negative • Get rid of (drop) unwanted zeros
Scientific Notation • What are some examples of scientific notation? • Large numbers • 190,000,000 • 1.9 x 108 • Zeros at the end are dropped • Small number • 0.000567 • 5.67 x 10-4 • Zeros at the beginning are dropped
Scientific Notation Practice • Please convert the following into proper scientific notation: • 784000 • 101 • 0.023498 • -4321 • 0.0000006 • 1.30 • 7.84 x 105 • 1.01 x 102 • 2.3498 x 10-2 • -4.321 x 103 • 6 x 10-7 • 1.30
Scientific Notation Reversed • Please convert the following into standard format: • 5.68 x 103 • 2.1 x 10-5 • 4.309 x 102 • 5680 • 0.000021 • 430.9
Scientific Notation Revisited • Put into scientific notation: • 1358 • 0.0000986 • Put into standard format: • 5.4 x 102 • 9.03 x 10-3
Scientific Notation and Calculators • What buttons are used on a calculator for scientific notation? • Its EE -or- exp
Scientific Notation and Calculators • What may show up on my screen? • On your screen, you may see the following: • X10 exponent • E exponent • (space) exponent
Scientific Notation and Calculators • Put the following number into your calculator and hit equals/enter: 4.56 x 1015 • Please understand that you will need to translate this into proper notation!
Scientific Notation and Calculators • Using your calculator, determine the following answers in scientific notation: Multiply: • (4.57 x 10-3)(2.0 x 105) Divide • (3.1 x 103)/(4.7x105) • 914 • 0.0066 OR 6.6x10-3
Scientific Notation • What power are you multiplying and dividing by each time you move a decimal? • Powers of 10 • These powers allow us to understand very large (size of galaxies) and very small (size of atoms) numbers
Powers of Ten • What are some familiar powers of ten? • 109 - Billons • 106 - Millions • 103 - Thousands • 102 - Hundreds • 10-6 - Micro
Powers of Ten • In meters, what is the correct power of ten? • Distance from LA to NYC • Diameter of the earth • Diameter of the sun • Diameter of our galaxy • 3.9 x 106 • 1.3 x 107 • 1.4 x 109 • 1.1 x 1021
Dimensional Analysis Why is dimensional analysis important? It allows us to easily convert between units using a series of equivalent fractions
Dimensional Dominoes - Colors • With your team, set up the color dominoes to convert the following colors into new ones. • Convert cowpoke brownto deeply red • Convert cowpoke brownto pink glitz • Convert black leather to orange sizzle • Convert orange sizzle to black leather • Convert cowpoke brown to tabby
Dimensional Dominoes - Units • The portage trails on maps are measured and marked in rods. On a recent canoe trip to the Skagit and Cascade Rivers my brother and I portaged a total of 2342 rods. How many total miles did we carry our gear? • Directions: With your team, set up the unit dominoes to convert the following units into new ones then copy the set-up into your notes. Answer = 7.3 miles
Dimensional Dominoes - Units • The English unit, the rod, is equal to 16.5 ft. What is this length expressed in meters? • Directions: With your team, set up the unit dominoes to convert the following units into new ones then copy the set-up into your notes (right side). Answer = 5.03 meters
Dimensional Dominoes - Units • If a college student smokes an average of 10 cigarettes per day for five years of school, how much money will they have spent on smokes by the time they graduate? • Directions: With your team, set up the unit dominoes to convert the following units into new ones then copy the set-up into your notes. Answer = $ 4106.25
Dimensional Dominoes - Units • The weight of bullets and arrows is measured in a unit called the grain. If an arrow weighs 330 grains what is its weight in ounces? • Directions: With your team, set up the unit dominoes to convert the following units into new ones then copy the set-up into your notes. Answer = 0.775 ounces
Dimensional Dominoes - Units • Assuming that you attend school 180 days a year for 8 hours a day from first through twelfth grade, you’d be in class for a total of 2160 school days. How many total years of your life will you have spent in school by the time you graduate? • Directions: With your team, set up the unit dominoes to convert the following units into new ones then copy the set-up into your notes. Answer = 1.97 years
Dimensional Dominoes - Units • How many pounds does a 5 gallon pail of water weight? • Directions: With your team, set up the unit dominoes to convert the following units into new ones then copy the set-up into your notes. Answer = 41.62 pounds
Dimensional AnalysisJerseylicious "How much is a centimeter?"
Dimensional AnalysisAmerican Chopper – Why we have the metric system!
Dimensional Analysis • What is a base unit? • What is a prefix? • Basic unit from which all other units are created • Ex. Length – meters • Ex. Mass – grams • Goes in front of a base unit to indicate how many • Ex. Length – kilometers • Ex. Mass – milligrams
Dimensional Analysis How many different types are there? • Three types: • Two step - converting to or from a base unit • Ex. m to km • Three step - converting from a non-base unit to a non-base unit • Ex. mm to km • Non-metric – converting between different scales
Dimensional Analysis - Two Step • Please convert 5 kilograms to grams. • First fraction is what we have: • Second fraction is what we want: • Remember… The unit with the prefix gets the one! • Multiply across the top and bottom and then divide.
Dimensional Analysis - Two Step • Please convert: • 2.5 cm to m • 0.04 J to kJ • 3.1 x 104 mL to L • 50.8 g to ng • 3.5 g to mg • 0.5 L to cL