1 / 15

常 伝導技術 で の LC の可能性 LC feasibility consideration with normal conducting technology

常 伝導技術 で の LC の可能性 LC feasibility consideration with normal conducting technology. 第5回 「機構の研究推進について」 の意見交換会 (ILC の推進について ) 平成 24 年 2 月 13 日 加速器・肥後寿泰. Why normal conducting for LC now?.

Download Presentation

常 伝導技術 で の LC の可能性 LC feasibility consideration with normal conducting technology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 常伝導技術でのLCの可能性LC feasibility consideration with normal conducting technology 第5回「機構の研究推進について」の意見交換会 (ILCの推進について) 平成24年2月13日 加速器・肥後寿泰

  2. Why normal conducting for LC now? • Normal conducting (NC) X-band high gradient research has been pursued for the past twenty years at SLAC, KEK and now at CERN. • It is worthwhile to continue this research in order to merge the present NC technology with that currently being developed for a future CLIC-type machine. • If a low energy machineis needed, NC X-band technology may serve as a compact, extendable and versatile (e+e-/γγ)machine. • For higher energies, it can serve as a prototype for a CLIC type machine. 肥後 機構の意見交換会(2月13日)

  3. Physics playground Stage 1: e+ e- Z, WW, HZ @ Eee~ 90 – 250 GeV Stage 2: e+ e- t t e- e- γγ  H, HH @ Eee~ 170 – 350 GeV Stage 3: e+ e- H H Z, t t H @ Eee~ 500 GeV R. Belusevic, KEK Preprint 2008-33 肥後 機構の意見交換会(2月13日)

  4. Accelerator layout 肥後 機構の意見交換会(2月13日)

  5. GLC Project, KEK Report 2003-7 GLC configuration2004 Design: 500 GeV and extendable to 1TeV 肥後 機構の意見交換会(2月13日)

  6. GLC Project, KEK Report 2003-7 GLC two tunnel schematic Klystron peak power 75MW 60cm effective length accelerator structure SLED-II pulse compression 1.6microsec400nsec 肥後 機構の意見交換会(2月13日)

  7. GLC Project, KEK Report 2003-7 GLC RF configuration PPM klystron 75MW, 1.6 microsec 4 klystrons / modulator 29m SLED-II Loaded gradient 50 MV/m 75 MW, 400ns / structure 肥後 機構の意見交換会(2月13日)

  8. Rough-rough design parameters (1) 肥後 機構の意見交換会(2月13日)

  9. Rough-rough design parameters (2) 肥後 機構の意見交換会(2月13日)

  10. Rough-rough design parameters (3) 肥後 機構の意見交換会(2月13日)

  11. 1m RF unit configuration 40MW X 1.0 ms X 2kly Compressor cavity 250MW X 250 nsec 52MW / structure 肥後 機構の意見交換会(2月13日)

  12. Klystron feasibility XL4 NLCTA PPM Nextef PPM Nextef 肥後 機構の意見交換会(2月13日)

  13. KEK’s Fundamental Contributions to 100 MV/m Accelerating Structures Oide, Steinar: KEK/Japan – CERN Collaboration on Linear Collider Studies, Dec. 2011 Fabrication – 6/7 of the above tests, with all best results achieved with KEK-coordinated machining of structures. Testing – 4/7 with best performance of all categories of structures in tests made in NEXTEF at KEK. High-gradient science – Extensive measurements of high-gradient rf instrumental in developing theory. 肥後 機構の意見交換会(2月13日)

  14. Preliminary and at 240ns FLT pulse CLIC req. TD24 T24 肥後 機構の意見交換会(2月13日)

  15. Conclusion • Worthwhile to reconsider NC choice for low energy Higgs physics. • High gradients imply compact accelerator complex. • First stage may be built within a KEK-size site. • Operation can serve as a rigorous test of CLIC design, with exception of drive beam. • Energy extendable. • Physics potential increased using e+e-/γγ • Critical issues still to be discussed are • Overall design • Proof of RF system configuration • Cost 肥後 機構の意見交換会(2月13日)

More Related