330 likes | 463 Views
Special Procedures. Fred Hill, MA, RRT. Surfactant Replacement. Composition Phospholipids (90%) phosphatidylcholine (PC) (85%) - dipalmitoyl phosphatidylcholine (DPPC) (60%) Phosphatidylglycerol (PG) Phosphatidylinositol (PI) Cholesterol Proteins (5-10%): SP-A, SP-B, SP-C, SP-D.
E N D
Special Procedures Fred Hill, MA, RRT
Surfactant Replacement Composition • Phospholipids (90%) • phosphatidylcholine (PC) (85%) - dipalmitoyl phosphatidylcholine (DPPC) (60%) • Phosphatidylglycerol (PG) • Phosphatidylinositol (PI) • Cholesterol • Proteins (5-10%): SP-A, SP-B, SP-C, SP-D
Surfactant Replacement Indications • Prophylactic administration (high risk for developing RDS) • <32 weeks gestational age • <1300 grams • L/S ratio <2:1 • Absence of PG • Therapeutic (rescue) administration • ↑WOB (grunting, retractions, nasal flaring) • ↑ O2 requirements • RDS on CXR
Surfactant Replacement Types of Surfactant • Exosurf (colfosceril palmitate): synthetic, 5 ml/kg • Survanta (beractant): calf lung, 4 ml/kg • Infasurf (calfactant): calf lung, 3 ml/kg • Curosurf (poractant alfa): pig lung, 2.5 ml/kg
Surfactant Replacement Adverse Effects • Bradycardia, desaturation • ETT reflux, ETT obstruction • Barotrauma Benefit • Decreased mortality rates • Decreased morbidity rates, reduction in: • Severity of RDS • Pulmonary air leaks • Incidence of BPD
High –Frequency Ventilation Introduction • Delivery of small tidal volumes at very high rates (usually >150/min.) • Rates may be expressed in hertz (Hz) (1 Hz = 60/min.) • Amplitude = ΔP, determines PCO2 • Mean airway pressure determines PO2
High –Frequency Ventilation Indications • Respiratory failure unresponsive to conventional methods • Pulmonary air leaks • Congenital diaphragmatic hernia
High –Frequency Ventilation Hazards • Gas trapping & hyperinflation • Necrotizing tracheobronchitis (especially with HFJV) • Chest assessment is difficult • Obstruction • Malposition of ETT
High –Frequency Ventilation Types • High-frequency positive pressure ventilation (HFPPV) • High-frequency jet ventilation (HFJV) • High-frequency Oscillatory Ventilation (HFOV)
High –Frequency Ventilation High-Frequency Positive Pressure Ventilation (HFPPV) • 60 to 150 bpm • Tidal volume exceeds dead space • Possible advantages: • ↓ pneumothoraces • ↓ asynchrony with ventilator
High –Frequency Ventilation High-Frequency Jet Ventilation (HFJV) Bunnell Life Pulse High Frequency Ventilator
High –Frequency Ventilation High-Frequency Jet Ventilation (HFJV) • 240-660 bpm • Passive exhalation • Requires special ETT or adapter • In tandem with conventional ventilator • Occasional sighs • PEEP • Continuous gas flow for entrainment
High –Frequency Ventilation High-Frequency Oscillatory Ventilation (HFOV) Sensormedics 3100A
High –Frequency Ventilation High-Frequency Oscillatory Ventilation (HFOV) • 8 to 30 HZ (480 – 1800) • Active inspiration and exhalation
Inhaled Nitric Oxide Action • Causes smooth muscle relaxation in vascular walls of pulmonary vessels • Improves oxygen delivery due to dilation of vessels in ventilated areas of lung
Inhaled Nitric Oxide Applications • PPHN – most important • MAS • RDS • Pneumonia, sepsis • Congenital diaphragmatic hernia
Inhaled Nitric Oxide Hazards • Nitrogen dioxide (NO2) • Methemoglobinemia
Inhaled Nitric Oxide Application • INOvent Delivery System • 8 – 20 ppm
Extracorporeal Membrane Oxygenation (ECMO) History • 1950’s: short-term (hours) in open heart surgery • 1960’s: long-term (days to weeks) • 1971: first use in infants
Extracorporeal Membrane Oxygenation (ECMO) Exclusion Crtieria • Gestational age <35 weeks • Pre-existing IVH • Significant coagulopathy or uncontrollable bleeding. • No major (>grade 1) intracranial hemorrhage • Irreversible lung injury • Major congenital/chromosomal anomalies or severe encephalopathy • Major cardiac malformation • Mechanical Ventilation : >7days • Cardiac arrest other than immediately at birth
Extracorporeal Membrane Oxygenation (ECMO) Inclusion Criteria • 80% mortality risk if no ECMO intervention • Oxygenation Index (OI)>40: OI =(Mean Airway Pressure [cmH20] x FiO2 x 100) which in turn is divided by the Post ductal PaO2 [mmHg] • OI = Paw x FIO2 x 100 PaO2 • Gestational Age >35 weeks • Weight >2 kgs • Reversible lung disease • No major (>grade 1) intra-cranial hemorrhage • No lethal congenital abnormalities
Extracorporeal Membrane Oxygenation (ECMO) Mechanisms of Bypass • Venoarterial: blood drawn from right atrium via right internal jugular vein, returned to the aortic arch via right common carotid artery • Takes over function of heart and lungs • Venovenous: blood drawn from right atrium via right internal jugular vein, returned to right atrium via femoral vein • Takes over function of lungs
Advantages of Venovenous ECLS • Sparing of carotid artery • Preservation of pulsatile flow • Normal pulmonary blood flow • Perfusion of lungs with oxygenated blood • Perfusion of coronaries with oxygenated blood • Avoidance of infusion of possible emboli into arterial circulation • Central venous pressure accurate • Selective limb perfusion does not occur
Disadvantages of Venovenous ECLS • No cardiac support • Lower systemic PaO2 • Recirculation issues
Advantages of Venoarterial ECLS • Provides cardiac support • Excellent gas exchange • Rapid stabilization
Disadvantages of Venoarterial ECLS • Carotid artery ligation • Nonpulsatile flow • Reduced pulmonary blood flow • Lower myocardial oxygen delivery • Direct infusion of possible emboli into arterial circulation • Central venous pressure inaccurate
Extracorporeal Membrane Oxygenation (ECMO) Components of ECMO Circuit • Venous blood drainage reservoir • Blood roller pump • Membrane oxygenator • Heat exchanger
Extracorporeal Membrane Oxygenation (ECMO) Physiologic Complications • Bleeding • Volume problems • Blood pressure problems • Hematologic problems (anemia, leukopenia, thrombocytopenia) • Infection
Extracorporeal Membrane Oxygenation (ECMO) Technical Complications • Pump failure • Rupture of tubing • Membrane failure • Cannula problems • Other mechanical failures
Extracorporeal Membrane Oxygenation (ECMO) Overview • Early method of rescue • Less important today with advent of SRT, HFOV, and iNO • Still an important life support option in some centers