1 / 30

Advanced Facility Diagnostics for Optics Monitoring and Simulation

Explore cutting-edge facility diagnostic tools like Direct Imager, Scattering Foil Imager, and more. Includes pulse monitoring, X-ray beam imaging, and spatial coherence analysis. Enhance your commissioning and modeling processes with advanced technologies.

giovannav
Download Presentation

Advanced Facility Diagnostics for Optics Monitoring and Simulation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DiagnosticsRichard M. Bionta, LLNLApril 24, 2002 • Diagnostics Layout • Facility Diagnostics • Commissioning Diagnostics • Modeling and Simulation Richard M. Bionta, LLNL

  2. Layout of X-ray transport and diagnostics. • A1 • Mirror • A2 • Optics • experiments • A4 • FEL • measurements • FEE: • Slits • Attenuators • B1 • Monochrometer • B2 • Optics • experiments HALL A HALL B FFTB Tunnel Diagnostic Tanks FEE 1 & 3: Commissioning Diagnostic Tank A4-1 Diagnostic Tank A1-1 Diagnostic Tank B1-1 Richard M. Bionta, LLNL

  3. Facility Diagnostics • Requirements • Pulse-to-pulse monitoring of pulse energy, shape and centroid • Provide information for setting and monitoring facility optics • Instruments • Direct Imager • Scattering Foil Imager • Micro Strip Ion Chamber • Tanks • FEE 1 • Ion Pumped tanks Richard M. Bionta, LLNL

  4. Direct Scintillation Imager CCD Camera Microscope Objective X-ray beam X-ray beam LSO or YAG:Ce crystal prism assembly Richard M. Bionta, LLNL

  5. LLNL PRAD System – most recent relevant project SSSC camera electronics: LLNL custom PD array: Hammamatsu 4mm x 1mm x 32 pixels lens: 15 cm dia f/1 to f/3 lenses • CCD cameras • LLNL custom 2048 x 2048 gatable intensfied CCD cameras • Roper Scientific commercial 512 x 512 gatable intensified CCD cameras Optics F/1.8 commercial telephoto lenses by Canon Effective pixel sizes: ccd: 50 x 50 mm to 200 x 200 mm for 10 cm fov sssc: 1.4 x 0.36 mm Protons/X-rays • Radiators: • Scintillating fiber array • LSO crystal screen • Phosper screen turning mirrors Richard M. Bionta, LLNL

  6. 1 x 4 mm x 32 elements photodiodes 8 of LBL 16 x 512 analog switch capacity storage and digitizer Modified LOTIS back end PCI interface Solid State Streak Camera • For dynamic experiments, LLNL developed1-D streak camera (E. Ables, E. Parker, L. Ott) • 128 elements x 512 sampling synchronized by external clock rate (e.g. accelerator timing) Richard M. Bionta, LLNL

  7. Solid State Streak Camera Performance • 1-D streak camera images of shock fronts at 178 nsec sampling rates Pxl Pxl Time Richard M. Bionta, LLNL

  8. Scattering Foil Imager Vacuum pipe, no windows Vacuum pipe, no windows Be Foil / mirror Scintillator Objective CCD System Richard M. Bionta, LLNL

  9. Micro Strip Ion Chamber Cathodes Isolation valve with Be window Windowless FEL entry Segmented horizontal and vertical anodes Differential pump Differential pump Richard M. Bionta, LLNL

  10. Micro-strip Ion Chamber Focal Plane - HV Cathode Region of intense electric field where amplification occurs if needed FEL Electric Field Path of photoelectrons Gas Shaping electrodes at - HV Sensing electrodes Richard M. Bionta, LLNL

  11. Micro-Strip gas mixer Shut-off valve Flow Control Logic Pressure regulators Pressure sensor To Ion Chambers Mixed Gas Iso Freon Ar Component Gas Bottles Richard M. Bionta, LLNL

  12. Similar to larger scale BaBar gas mixer Richard M. Bionta, LLNL

  13. Diagnostic tank FEE 1 Foil Imager Direct Imager ION Chamber Isolation valve Space for calorimeter Turbo pump Richard M. Bionta, LLNL

  14. Diagnostic tank FEE 1 ION Chamber Isolation valve Direct Imager Space for calorimeter Foil Imager Turbo pump Richard M. Bionta, LLNL

  15. Ion Pumped Diagnostic tanks FEE 3, A1, … Foil Imager Direct Imager ION Chamber Isolation valve Ion pump Richard M. Bionta, LLNL

  16. Commissioning Diagnostics • Tank A4-2 • Measurements (requirements) • Total energy • Pulse length • Photon energy spectra • Spatial coherence • Spatial shape and centroid • Divergence Richard M. Bionta, LLNL

  17. Commissioning diagnostic tank A4-2 Detector and attenuator Stage Aperture Stage “Optic” Stage Rail alignment Stages Rail Richard M. Bionta, LLNL

  18. Costing based on SSRL 2-3 set up Richard M. Bionta, LLNL

  19. Total Energy Temperature sensor Poor Thermal Conductor absorber Heat Sink Crossed apertures On positioning stages Attenuator Scintillator Richard M. Bionta, LLNL

  20. Pulse Length X-ray Beam Interferometer Streak Cameras Time Microscope CW Laser Richard M. Bionta, LLNL

  21. Photon Spectra Measurement Detector and attenuator Stage Aperture Stage Crystal (8KeV) Grating (0.8 KeV) Stage X ray enhanced linear array and stage Richard M. Bionta, LLNL

  22. Spatial Coherence Measurement Detector and attenuator Stage Slits Stage Array of double slits Richard M. Bionta, LLNL

  23. Spatial shape, centroid , and divergence • A1 • A2 • A4 • FEE: HALL A FFTB Diagnostic Tanks FEE 1 & 3: Commissioning Diagnostic Tank A4-1 Diagnostic Tank A1-1 Spatial shape, centroid , and divergence measured by combining data from the imagers in these tanks. Richard M. Bionta, LLNL

  24. Modeling and Simulation • Single Frequency Gaussian Beam Model • Wave Packet Model • Monte Carlo Richard M. Bionta, LLNL

  25. Single frequency Gaussian Beam model Materials/Dose Kirchoff Diffraction Gaussian Beam Model For a given LINAC energy creates an analytic Gaussian-Hermite model of the LCLS FEL electric field that can be used for optical design calculations. Displays electric field parameters (amplitude, FWHM etc..) at user specified position. Calculates peak dose and x-ray optical constants for materials placed in the LCLS beam at user defined positions. Predicts the action of transmissive optics on the LCLS FEL beam. Will upgrade physics to include reflectors and crystals. Will add components for each LCLS optics element. Richard M. Bionta, LLNL

  26. watts c m2 watts c m2 watts c m2 watts c m2 x 1015 x 1017 x 1017 x 1015 Power Density Time Domain Frequency Domain Power Density 1.94 Temporal Transform 1.73 0 0 w0-400/fs w0 w0+400/fs 2 4 0 6 Time, femtoseconds frequency 0 150 Spatial Transform Power Density Power Density 1.94 1.73 0 0 -325 -10 304 -150 0 150 Wavenumber, mm-1 Transverse position, microns Ginger provides envelope of FEL Gaussian components Viewer GINGER output: Tables of electric field values at undulator exit at different times viewer Transformation to Frequency Domain R, mm Propagation to arbitrary z Richard M. Bionta, LLNL

  27. watts c m2 watts c m2 watts c m2 watts c m2 x 1015 x 1017 x 1017 x 1015 Power Density Time Domain Frequency Domain Power Density 1.94 Temporal Transform 1.73 0 0 w0-400/fs w0 w0+400/fs 2 4 0 6 Time, femtoseconds frequency Spatial Transform Power Density Power Density 1.94 1.73 0 0 -325 -10 304 -150 0 150 Wavenumber, mm-1 Transverse position, microns Wave Simulation combines Ginger and Gaussian Ginger Input Modification of Component Gaussians by optical element Summation of modified Gaussian components Gives field vs time Richard M. Bionta, LLNL

  28. Monte Carlo - Photon ray tracing Photons generated according to wave prediction Richard M. Bionta, LLNL

  29. 1.3.1.6 Diagnostics Cost Estimate (FY02 Dollars, Thousands) Richard M. Bionta, LLNL

  30. Summary • Solutions exist for all diagnostics that are within the resource guidelines • We can meet the LCLS schedule Richard M. Bionta, LLNL

More Related