220 likes | 324 Views
BRGM visite : CERN présent et futur Frédérick Bordry 14 mai 2014. Les missions du CERN. Repousser les frontières des connaissances Les secrets du Big Bang …à quoi ressemblait la matière dans les tout premiers instants de l’existence de l’Univers ?
E N D
BRGM visite: CERN présent et futur Frédérick Bordry 14 mai 2014
Les missions du CERN Repousser les frontières des connaissances Les secrets du Big Bang …à quoi ressemblait la matière dans les tout premiers instants de l’existence de l’Univers ? Développer de nouvelles technologiespour les accélérateurs et détecteurs Technologies de l’information : le Web et la Grille Médecine – diagnostic et thérapie Former les scientifiques et les ingénieurs de demain Rassembler des personnes de différentes nations et cultures
CERN: fondé en 1954; 12 états membres « Science pour la Paix » 21 états membres ~ 2300 membres titulaires ~ 1620 autres personnels payés ~ 10500 utilisateurs Budget (2014) 1000 MCHF Etats Membres:Allemagne,Autriche, Belgique, Bulgarie, Danemark, Espagne,Finlande, France, Grèce, Hongrie, Israël, Italie, Norvège,Pays Bas, Pologne, Portugal, République Tchèque,Royaume Uni, Slovaquie, Suède, Suisse Candidat à l’ accession au statut d‘Etat Membre:Roumanie Etat membre associé en phase préalable d’adhésion au CERN: Serbie En cours de négociation: Brésil, Chypre, Pakistan, Russie, Slovénie, Turquie, Ukraine Observateurs au Conseil:Inde, Japon, la Fédération de Russie, Turquie, les Etats-Unis, la Commission Européenne et l’Unesco France et CERN / Mai 2009 3
LHC (Large Hadron Collider) 14 TeV proton-proton accelerator-collider built in the LEP tunnel Lead-Lead (Lead-proton) collisions 1983 : First studies for the LHC project 1988 : First magnet model (feasibility) : Approval of the LHC by the CERN Council 1996-1999 : Series production industrialisation 1998 : Declaration of Public Utility & Start of civil engineering 1998-2000 : Placement of the main production contracts 2004 : Start of the LHC installation 2005-2007 : Magnets Installation in the tunnel 2006-2008 : Hardware commissioning 2008-2009 : Beam commissioning and repair 2009-2035 : Physics exploitation A 27 km circumference collider…
Four large experiments Overall layout of LHC
LHC: les grands défis technologiques Les spécifications de nombreux systèmes dépassaient le plus souvent l’état de l’art. Il a fallu mener de longs programmes de R&D avec de nombreux instituts et industries du monde entier. • Aimants supraconducteurs à champ élevé: 8.3 T(1232 aimants dipolaires de 15 m) • Le plus grand système d’aimant supraconducteurs (~10’000 aimants) • La plus grande installation cryogénique 1.9 K (hélium superfluide, 150 tonnes de • LHe pour refroidir 37’000 tonnes) • Ultra-vide cryogénique pour les faisceaux de particules (10-13 atm, 10 fois plus • faible que sur la lune) • Des forts courants électriques contrôlés avec une grande précision(jusqu’à 13 kA) • Une très grande précision pour les convertisseurs de puissance (niveau du ppm) • Un système de protection ultra-fiable pour les aimants et les équipements • (énergies stockées: magnétique > 10 GJ, dans les faisceaux >700 MJ)
June 1994first full scale prototype dipole June 2007First sector cold ECFA-CERN workshop April 2008 Last dipole down September 10, 2008 First beams around 1994 project approved by council (1-in-2) 9T- 1m single bore 25 years Main contracts signed 83 84 98 91 97 95 96 94 92 00 93 99 90 03 04 02 06 01 07 10 08 09 05 2002 String 2 November 2006 1232 delivered Decision for Nb-Ti 9T -10 m prototype 7
2010-2012: LHC integrated luminosity • 2010: 0.04 fb-1 • 7 TeVCoM • Commissioning • 2011: 6.1 fb-1 • 7 TeVCoM • … exploring limits • 2012: 23.3 fb-1 • 8 TeVCoM • … production BEH boson announce Lpeak = 0.77. 1034 30 fb-1 7 TeV and 8 TeV in 2012 Up to 1380 bunches with1.5 1011 protons
Prix Nobel en physique 2013 Le Prix Nobel de physique 2013 fut attribué conjointement à François Englert et Peter W. Higgs« pour la découverte théorique d'un mécanisme contribuant à notre compréhension de l'origine de la masse des particules subatomiques, et qui a été confirmée récemment grâce à la découverte de la particule fondamentale prédite (le boson de Higgs) par les expériences ATLAS et CMS menées au Large Hadron Collider du CERN ».
Opening:100% 100 % done 100 % done 99 % done 100 % done 97 % done Closure: 80% 3000 3 Done Done 90 % done 70 % done 100 % done 96 % done Long shutdown 1 (LS1)
Physics LHC schedule: Run2 and Run 3 LHC schedule: LS3 Shutdown Beam commissioning Technical stop • LS2 starting in 2018 (July) => 18 months + 3 months BC • LS3 LHC: starting in 2023 => 30 months + 3 months BC • Injectors: in 2024 => 13 months + 3 months BC (Extended) Year End Technical Stop: (E)YETS 30 fb-1 LS 2 YETS EYETS YETS YETS Run 2 Run 3 Run 2 LS 2 Run 3 PHASE 1 LS 3 Run 4 YETS LS 3 Run 4 YETS 300 fb-1 LS3 : HL-LHC installation LS 4 Run 5 LS 5 LS 4 Run 5 LS 5
The European Strategy for Particle Physics Update 2013 Europe’s top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. This upgrade programme will also provide further exciting opportunities for the study of flavour physics and the quark-gluon plasma. HL-LHC from a study to a PROJECT 300 fb-1 → 3000 fb-1 including LHC injectors upgrade LIU(Linac 4, Booster 2GeV, PS and SPS upgrade)
New quadrupoles Nb3Sn • New 11 T Nb3Sn dipoles • Collimation upgrade • Cryogenics upgrade • Crab Cavities • Cold powering • Machine protection • … The HL-LHC Project Major intervention on more than 1.2 km of the LHC
Physics LHC roadmap: schedule beyond LS1 Shutdown Beam commissioning Technical stop • LS2 starting in 2018 (July) => 18 months + 3 months BC • LS3 LHC: starting in 2023 => 30 months + 3 months BC • Injectors: in 2024=>13 months + 3 months BC (Extended) Year End Technical Stop: (E)YETS 30 fb-1 YETS EYETS YETS YETS Run 2 LS 2 Run 3 LS 2 Run 2 Run 3 PHASE 1 YETS LS 3 Run 4 YETS LS 3 Run 4 300 fb-1 PHASE 2 LS 4 Run 5 LS 5 LS 4 Run 5 LS 5 3’000 fb-1
“to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update” CERN should undertake design studies for accelerator projects in a global context, d) CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positronhigh-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnetsand high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide. HFM - FCC HGA - CLIC
“CERN should undertake design studies for accelerator projects in a global context, with emphasis onproton-protonand electron- positron high-energy frontier machines.” Highest possible energy e+e- with CLIC (CDR 2012) Multi-lateral collaboration
“to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update” d) CERN should undertake design studies for accelerator projects in a global context, d) CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positronhigh-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnetsand high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide. HFM – FCC-hh HGA - CLIC
Malta Workshop: HE-LHC @ 33 TeVc.o.m.14-16 October 2010 Magnet design (20 T): very challenging but not impossible. 300 mm inter-beam Multiple powering in the same magnet (and more sectioning for energy) Work for 4 years to assess HTS for 2X20T to open the way to 16.5 T/beam . Otherwise limit field to 15.5 T for 2x13TeV Higher INJ energy is desirable (2xSPS) The synchrotron light is not a stopper by operating the beam screen at 60 K. The beam stability looks « easier » than LHC thanks to dumping time. Collimation is possibly not more difficult than HL-LHC. Reaching 2x1034 appears reasonable. The big challenge, after main magnet technology, is beam handling for INJ & beam dump: new kicker technology is needed since we cannot make twice more room for LHC kickers.
"High Energy LHC" HE-LHC :33 TeV with 20T magnets First studies on a new 80 km tunnel in the Geneva area • 42 TeV with 8.3 T using present LHC dipoles • 80 TeV with 16 T based on Nb3Sn dipoles • 100 TeV with 20 T based on HTS dipoles
Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018) • Forming an international collaboration to study: • pp-collider (FCC-hh) defining infrastructure requirements • e+e-collider (FCC-ee) as potential intermediate step • p-e (FCC-he) option • 80-100 km infrastructure in Geneva area ~16 T 100 TeVpp in 100 km ~20 T 100 TeVpp in 80 km