170 likes | 192 Views
Adapting CMOS Active Pixel Sensors for HgCdTe Photodiodes. Zeynep Dilli, Neil Goldsman, Martin Peckerar, Nibir Dhar. Active Pixel Sensors. (adapted from El Gamal et al. and Yadid-Pecht et. al.). Source-Follower Active Pixel Sensor (SFAPS) Circuit.
E N D
Adapting CMOS Active Pixel Sensors for HgCdTe Photodiodes Zeynep Dilli, Neil Goldsman, Martin Peckerar, Nibir Dhar
Active Pixel Sensors (adapted from El Gamal et al. and Yadid-Pecht et. al.)
Source-Follower Active Pixel Sensor (SFAPS) Circuit • Simple version: 3 transistors (pixel reset, source follower, access), one photodiode • Not shown: Row read circuitry, a timed buffer connected to v_out and activated a set time after pixel access
SFAPS Circuit • Operation: • Reset transistor gate pulsed, photodiode junction cap. charged up, source follower output follows • Photocurrent starts discharging, SF output follows • Access transistor gate pulsed, output cap.charged up • Bias current discharges output voltage linearly until the set read time for v_out
SFAPS Circuit • Operation: • Reset transistor gate pulsed, photodiode junction cap. charged up, source follower output follows • Photocurrent starts discharging, SF output follows • Access transistor gate pulsed, output cap.charged up • Bias current discharges output voltage linearly until the set read time for v_out
Operation: • Reset gate pulsed, photodiode charged up, SF output follows • i_pf discharges diode cap., SF output follows • Access gate pulsed, output cap. charged up • i_bias discharges output until the set read time for v_out
APS Circuit + Output Transmission Gate • Modeling: • Photodiode modeled with capacitor in parallel with n p current sources • Dark current is modeled as a fixed DC current
HgCdTe Photodiodes • Diode responsivity: ~4-5.5 for 10 μ radiation [1] • For a 40 μ by 40 μ diode, photocurrent~10s of μA, for light intensity ~1e-9 W/μ2 (sunlight in visible; source intensity for 10 μ radiation likely to be lower.) • Dark current ~4 nA for 100K and ~500 nA for 150 K (ARL data) • Diode needs to be reverse biased; however, higher reverse bias increases dark current significantly as well [1] Fukuda, Matsuura & Mori, 1984
SFAPS circuit operation with HgCdTe diode; Effect of Idark • If next stage is A/D converter, resolution depends on output voltage separation • Low Id: 1.26V-912mV=348 mV • High Id: 1.08V-812V=268mV • Highest detectable illumination range is also reduced.
Approaches for Dark Current Compensation • Reduce the dark current of the diode itself: • Cool the diodes (not applicable in this project) • Reduce the bias across the diode with the design of the input and readout circuits • Transimpedance amplifiers [1] • Direct injection [2,3] • Pseudoactive pixel sensors [4] • Cancel the dark current of each diode during operation: • Frame differencing schemes [5] • Extra unilluminated pixels and current subtraction [4,6] [1] D’Souza, Wijewarnasuriya, Poksheva [2] Scribner, Kruer, Killiany, 1990 [3] Bailey, Kozlowski, Chen et al, 1991 [4] Shih, Wu, 2004 [5] Ma, Chen, 1999 [6] Abdallah, Dubaric, Nilsson et al., 2001
SFAPS Circuit • Advantages: • Small circuit, just three transistors per pixel: Large fill factor possible • Photodiode operation isolated from readout circuit • Flexibility in design with respect to timing design vs. power consumption vs. readout speed vs. resolution • DISADVANTAGE: Diode is reverse biased quite highly (at around 3.5V for out previous example)---not usable for HgCdTe diodes in basic form
Transimpedance Amplifier • Converts diode current input into voltage level at output of common-source amplifier PMOS • Sets diode bias by the source bias of the gate-drain shortedbiasing PMOS diode_n diode_p
Transimpedance Amplifier---Selecting Bias Point Diode bias set around -300 mV---better than SFAPS, still not low enough for HgCdTe. Working on improving this circuit.
Future Work • Investigate • Transconductance amplifiers (further) • Direct injection circuits • Different biasing schemes • Unilluminated extra pixels and dark current cancellation • Consider • HgCdTe requirement: Very low reverse bias • Hybrid integration [1] allows more space for readout circuitry per pixel; still, optimize circuits for power consumption • Timing requirements and tradeoffs? (Extrapolate from SFAPS work) • Sensitivity requirements and tradeoffs? (Extrapolate from SFAPS work) [1] Bailey, Kozlowski, Chen et.al., 1991 and later work