1 / 31

H CRE BIYOLOJISI I 2008-2009

H?CRELER ve H?CRE ARASTIRMALARI. H?crelerin molek?ler biyolojisini anlamak t?m biyolojik bilimlere temel olan aktif bir arastirma alanidir.Insan genomunun diziliminin tamamlanmasiyla h?cre ve molek?ler biyolojideki gelismeler tip uygulamalrinda yeni ufuklar a?mistir.Kanser h?zrelerinin ?ogalmasini

glynis
Download Presentation

H CRE BIYOLOJISI I 2008-2009

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. HÜCRE BIYOLOJISI I 2008-2009 Prof.Dr. Aysegül Topal sarikaya Istanbul Üniversitesi Moleküler Biyoloji ve Genetik Bölümü

    2. HÜCRELER ve HÜCRE ARASTIRMALARI Hücrelerin moleküler biyolojisini anlamak tüm biyolojik bilimlere temel olan aktif bir arastirma alanidir. Insan genomunun diziliminin tamamlanmasiyla hücre ve moleküler biyolojideki gelismeler tip uygulamalrinda yeni ufuklar açmistir. Kanser hüzrelerinin çogalmasini durdurmayi hedfleyen özgün ilaçlarin gelistirilmesi Diyabet Parkinson Alzheimer Omurga yaralanmalari ve kalp hastaliklarinda hasar görmüs dokunun yerini almak üzere kök hücrelerin kullanilmasi gibi

    3. Tüm hücreler evrim süresince korunmus ortak, temel özelliklere sahiptir. Ör: Tüm hücreler genetik materyal olarak DNA kullanirlar, plazma zariyla kusatilmislardir ve enerji metabolizmasi için ayni basit mekanizmalari kullanirlar Günümüz hücreleri çesitli farkli yasam biçimleri gelistirmislerdir. Bakteri amip gibi ve maya gibi birçok canli kendi basina çogalabilen tek hücreli organizmalardir. Karmasik yapili organizmalar ise farkli hücrelerin belirli görevleri yerine getirmek üzere özellestigi ve koordine bir sekilde islev gören hücre topluluklarindan olusur. Ör: Insan birbirinden farkli isleve sahip 200’den fazla çesitte hücreye sahiptir. HÜCRELER ve HÜCRE ARASTIRMALARI

    4. Ilk insan hücre kültürü 1951 yilinda John Hopkins Üniversitesinden George Gey tarafindan baslatildi. Hücreler malignant tümörlerden elde edildi ve vericisinin adindan “Henrietta Lacks” dolayi “HeLa” olarak adlandirildi. Günümüzde hücenin biyolojisini anlamak için yapilan tüm çalismalar “in vitro” dedigimiz vücut disinda üretilen (kültürü yapilan) hücrelerde yapilir.

    5. Hücreler Çok Karmasik ve Organize Yapilardir Karmasiklik: Kompleks yapi, çok parçali ve dogru yerlesimli olusum dogada hataya karsi düsük tolerans, parçalar arasinda etkilesim ve daha fazla kontrol olarak açiklanabilir Hücresel aktiviteler ise oldukça düzenli ve yüksek düzeyde kontrol altindadir. DNA duplikasyonu sirasinda her 10 milyon nukleotit katiliminda sadece 1 hata olabilmekte ve hata derhal taninarak onarim sistemleri tarafindan düzeltilmektedir.

    11. Hücreler bir genetik programa sahiptir Organizmalar genlerinin kodladigi bilgiye göre olusurlar. Insan genetik programi eger kelimelere dökülseydi miyonlarca sayfadan olusan bir metin olusurdu. Bu çok büyük miktardaki bilgi nukleus içinde yeralan kromozomlar üzerinde paketlenmistir. Genlerin moleküler yapisi genetik yapinin degismesine izin verir (mutasyon). Mutasyon bireyler arasindaki çesitliligin olusmasina neden olur ve biyolojik evrimin temelidir.

    12. Hücreler kendilerini çogaltma yetenegine sahiptir. Herbir organizma kendini çogaltabilirse hücrelerde bunu yapabilirler Birana hücreden iki yeni yavru hücre olusmadan önce genetik materyal iki katina çikar ve herbir yeni yavru hücre ana hücre ile ayni genetik materyali tasir. Genellikle iki yavru hücrenin hacmi de esittir. Bazi durumlarda insan oositi bölünme geçirdikten sonra bir yavru hücre genetik materyalin yarisini içerse de sitoplazmanin tamamina yakini tasir.

    13. Hücreler Enerjiyi Kazanir ve Kullanir Karmesikligin olusumu ve devamliligi sürekili bir enerji girdisini gerektirir. Isigin enerjisi fotosentetik hücrelerin membranlarinda bulunan isik absorblayan pigmentler tarfindan tutulur. Isik enerjisi fotosentez ile kimyasal enerjiye dönüstürülür ve nisasta ve sukroz gibi karbonhidratlarda enerji seklinde depolanir. Glukozun parçalanmasiyla olusan enerji ATP’de depolanir. Hücre makromolekülleri, organelleri parçalayarak ve yeniden olusturarak çok fazla miktarda enerji harcar. Böylece hücre devamliligini saglar degisen kosullara kolaylikla uyum saglar.

    14. Hücreler çok çesitli kimyasal reaksiyonu basariyla gerçeklestiriler En basit bakteri hücresi bile yüzlerce farkli kimyasal tarnsformasyonu gerçeklestirebilir. Bu reaksiyonlarin hizini artirmak için “enzimlere” gereksinim duyulur. Hücredeki kimyasal reaksiyonlarin toplamina METABOLIZMA denir

    15. Hücreler Mekanik Aktivitelere Sahiptir Materyaller bir yerden bir yere tasinir. Çesitli yapilar yikilir yeniden yapilir, bazilari birlesir veya ayrilir. Hücrenin kendisi bir yerden baska bir yere tasinabilir. Bu tip aktiviteler dinamik motor proteinlerindeki sekil degismeleriyle baslayan hücre içindeki mekanik degismeleri temel alir.

    16. Hücreler Uyaranlara Cevap Verebilir Bazi hücreler uyaranlara karsi bildik yolla tepki verir. Ör: protistler karsilarina çikan objelerden kaçar veya besin maddelerine dogru hareket ederler. Çok hücreli bitkilerde ve hayvanlarda ise hücreler çok özgün bir yolla çevrelerindeki maddelerle iliskiye giren reseptörlerle kaplidir. Hücreler hormonlara, büyüme faktörlerine, hücre disi maddelere ve diger hücrelerin yüzeyindeki maddelere karsi reseptörlere sahiptir. Böylece hücreler hedef hücreye karsi özgün cevap, metabolik aktivitelerini degistirerek spesifik uyarana karsi özgün cevap, hareket veya ölüm gibi cevaplar verebilir.

    17. Hücreler Kendi Regülasyonlarini Yapabilir Karmasikligin devami ve düzeni sürekli bir regülasyon gerektirir. Bu regülasyonun bozulmasi çok önemli sonuçlara neden olur. Ör: DNA’daki hatalarin düzeltilmesinde onarim mekanizmasinin bozulmasi hücrede mutasyona ve çesitli hastaliklarin ortaya çikmasina neden olur. Hücrelerin kendi aktivitelerini nasil kontrol ettikleri konusu ise yavas yavas aydinlatilmaya baslamistir

    18. Prokaryotik ve Ökaryotik Hücreler temelde iki büyük sinifa ayrilir.

    24. Similarities between prokaryotes and eukaryotes reflect the fact that eukaryotes almost certainly evolved from prokaryotic ancestors A. Both types of cells encode genetic information in DNA using an identical genetic code B. Both types of cells share a common set of metabolic pathways (glycolysis, TCA cycle) C. Both types of cells share common structural features – similarly constructed plasma membrane that serves as selectively permeable barrier & cell walls (same function, different structure) D. Similar mechanisms for transcription & translation of genetic information, including similar ribosomes E. Similar apparatus for conservation of chemical energy as ATP (located in plasma membrane of prokaryotes & mitochondrial membrane of eukaryotes) F. Similar mechanism of photosynthesis (between cyanobacteria & green plants) G. Similar mechanism for synthesizing & inserting membrane proteins H. Proteasomes (protein digesting structures) of similar construction (between archaeabacteria & eukaryotes)

    25. Characteristics that distinguish prokaryotic & eukaryotic cells - eukaryotic cells are much more complex internally (structurally and functionally) than prokaryotes A. Eukaryotes have membrane-bound nucleus with nuclear envelope containing complex pore structures & other organelles; divides eukaryotic cells into nucleus & cytoplasm 1. Prokaryotes have nucleoid (poorly demarcated cell region that lacks boundary membrane separating it from surrounding cytoplasm) & no membrane-bound organelles 2. Despite importance often placed on nucleus as primary criterion for distinguishing prokaryotes & eukaryotes, a group of prokaryotes is reported to have membrane surrounding their genetic material 3. This provides good example of difficulty in making sweeping generalizations that apply to all groups of living organisms

    26. B. Prokaryotes – contain relatively small amounts of DNA (~600,000 base pairs [bp] to nearly 8 million bp; ~0.225 – 3 mm); 8 million bp equals DNA molecule nearly 3 mm long 1. Encodes between ~500 to several thousand proteins (1 mm of DNA = ~3 x 106 base pairs) 2. Simplest eukaryotes (4.6 mm or 12 million bp in yeast encoding ~6200 proteins) have slightly more DNA than prokaryotes; most eukaryotes have order of magnitude more DNA (genetic info) C. Eukaryotic chromosomes numerous; unlike prokaryotes, they contain linear DNA tightly associated with proteins to form a complex nucleoprotein material known as chromatin 1. Eukaryotic chromosomes are capable of compacting into mitotic structures

    27. D. Eukaryotes contain an array of complex membranous & membrane-bound organelles that divide cytoplasm into compartments within which specialized activities take place; some examples follow: 1. Mitochondria (plants & animals) – make chemical energy available to fuel cell activities; specialized cytoplasmic organelle for doing aerobic respiration 2. Endoplasmic reticulum (plants & animals) – where many cell lipids & proteins are manufactured 3. Golgi complexes (plants & animals) – sorts, modifies, transports materials to specific cell locations 4. Variety of simple membrane-bound vesicles of varying dimensions (plants & animals) 5. Chloroplasts (plants) – specialized cytoplasmic organelle that is the site of photosynthesis 6. Single large vacuole (plants) – occupies most of cell volume 7. Lysosomes – contains hydrolytic enzymes & carries out hydrolytic gestation; endosomes – vesicles bringing materials into cell to often be digested by lysosomes 8. Peroxisomes & glyoxysomes

    28. E. Eukaryotes have many such membrane-bound structures; prokaryotes mostly devoid of them (except for infolded bacterial mesosomes & cyanobacteria photosynthetic membranes) 1. Intracytoplasmic communication smaller issue in prokaryotes due to size (simple diffusion works); in eukaryotes, interconnected channels/vesicles transport stuff around cell & outside of cell 2. Eukaryotes have cytoskeletal elements usually lacking in prokaryotes that give cell contractility, movement, support; primitive cytoskeletal filaments recently found in bacteria a. Prokaryotic cytoskeleton much simpler structurally & functionally than that of eukaryotes 3. Prokaryote ribosomes smaller with fewer components than those of eukaryotes (but they essentially have the same function with similar mechanisms) 4. Both eukaryotes & prokaryotes may be surrounded by rigid, nonliving cell wall that protects, but their chemical composition is very different

    29. F. No mitosis or meiosis in prokaryotes (binary fission instead); prokaryotes proliferate faster (double in 20 - 40 minutes; they exchange genetic information via conjugation) 1. In eukaryotes, duplicated chromosomes condense into compact structures; separated by mitotic spindle (elaborate; contains microtubules); allows daughter cells to get equal genetic material 2. In prokaryotes, no chromosome compaction & no spindle; DNA is duplicated & copies are separated by growth of intervening cell membrane 3. Prokaryotes do not reproduce sexually, but in conjugation, DNA is exchanged; the recipient almost never gets whole chromosome from donor; cell soon reverts to single chromosome 4. Prokaryotes are not as efficient as eukaryotes in exchanging DNA with other members of their own species 5. Prokaryotes are, however, more adept than eukaryotes at picking up & incorporating foreign DNA from their environment; this has had considerable impact on microbial evolution

    30. G. Eukaryotes have more complex locomotor mechanisms than prokaryotes 1. Prokaryotes have thin, rotating protein filament (flagellum) protruding from the cell; rotations exert pressure against surrounding fluid propelling cell through medium 2. Eukaryotes have more complex flagella with different mechanism (also have cilia, pseudopodia) H. Eukaryotes have complex cytoskeletal system (including microfilaments, intermediate filaments & microtubules) & associated motor proteins; prokaryotes do not have such a system I. Eukaryotic cells are capable of ingesting fluid & particulate material by enclosure within plasma membrane vesicles (endocytosis, phagocytosis) J. Eukaryotes have cellulose-containing cell walls in plants K. Eukaryotes have 2 copies of each gene per cell (diploidy), one from each parent with sexual reproduction requiring meiosis & fertilization, unlike binary fission in prokaryotes L. Eukaryotes possess 3 different RNA synthesizing enzymes (RNA polymerases)

    31. IV. Prokaryotes are not inferior - metabolically very sophisticated & highly evolved A. They have remained on Earth for more than 3 billion years B. They live on and in eukaryotic organisms, including humans C. Make almost everything they need, e. g., Escherichia coli can live & prosper in a medium containing only 1 or 2 low MW organic compounds & a few inorganic ions 1. Some bacteria can live on a diet consisting solely of inorganic substances 2. One species has been found in wells >1000 m below Earth's surface; live on basalt rock & molecular hydrogen (H2) made by inorganic reactions D. Even the most versatile cells in human require a variety of organic compounds (vitamins, etc.) & other essential substances that they cannot make on their own

More Related