1 / 57

Vesicular Exocytosis “Neurotransmission and Catecholamines Release”

Vesicular Exocytosis “Neurotransmission and Catecholamines Release”. Christian Amatore Ecole Normale Supérieure, Département de Chimie UMR CNRS-ENS-UPMC 8640 "PASTEUR" Paris - France. Adapted from: http://www.abcam/neuroscience/. Adapted from: http://www.abcam/neuroscience/.

gomer
Download Presentation

Vesicular Exocytosis “Neurotransmission and Catecholamines Release”

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Vesicular Exocytosis “Neurotransmission and Catecholamines Release” Christian Amatore Ecole Normale Supérieure, Département de Chimie UMR CNRS-ENS-UPMC 8640 "PASTEUR" Paris - France

  2. Adapted from: http://www.abcam/neuroscience/

  3. Adapted from: http://www.abcam/neuroscience/

  4. Adapted from: http://www.abcam/neuroscience/

  5. Adapted from: http://www.abcam/neuroscience/

  6. Adapted from: http://www.mhhe.com/socscience/intro/ibank/set1.htm

  7. The Chromaffin Cell

  8. Photographs adapted from: W. Almers et al., Nature 406, 2000, 849-854.

  9. Photographs adapted from: W. Almers et al., Nature 406, 2000, 849-854.

  10. Photographs: release of insulin by pancreatic b-cells. Robert Kennedy. Private communication. (2002). Left sketch adapted from: http://www.mhhe.com/socscience/intro/ibank/set1.htm

  11. 10 µm E.L. Ciolkowski, K.M. Maness, P.S. Cahill, R.M. Wightman, D.H. Evans, B. Fosset, C. Amatore. Anal. Chem., 66, 1994, 3611.

  12. IC Itot = IF + IC IF • Problems Associated with Ultrafast Electrochemistry

  13. IC Itot = IF + IC IF • Ohmic Drop: • E(t) = ZFIF + RuItot(t) • Cell Time Constant: • tcell = RuCd • Problems associated with applying ultrafast electrochemical perturbations:

  14. Ru 1/r0 Cd r02 IC and IF r02 • Using Ultramicroelectrodes to Decrease Ohmic Drop and Cell Time Constant IC Itot = IF + IC IF

  15. IC Itot = IF + IC IF • For Planar Diffusion: RuItot  r0  0 • For Any Diffusional Regime: Ru Cd r0  0 • Using Ultramicroelectrodes to Decrease Ohmic Drop and Cell Time Constant

  16. E(t) ZFIF IF Itot – Cd(dE/dt) • Compensation of Ohmic Drop and Time Constant ZF IF = E(t) - (RuItot) IC= Cd(dE/dt) - RuCd(dItot/dt)

  17. Ultramicroelectrode (measurement) Release Micropipette (stimulation) Living Cell Petri dish with PBS 10 µm • Principle of Electroanalytical Measurements at Single Cells

  18. glass cases platinized surfaces insulating polymer 5 µm 5 µm 1-5 µm 10-12 µm • Preparation of Platinized Carbon Fiber Ultramicroelectrodes • Intrinsic Requirements • Sensitive detection of H2O2 ( "normal" [H2O2]cellular  10-9 to 10‑6 M ) • Sensitive detection of other expected species (NO°, etc.) •  Aerobic conditions ( [O2]  0,23 mM at 25° C ) •  Analysis medium: PBS •  Microsensor dimensions: adapted to cell dimensions • Real-time detection of biological events.

  19. 10 µm Qav = 0.9 pC Nav = 2.7 106 molecules

  20. Five Independent Physicochemical Stages Govern Exocytosis: 0. I. II. III. IV. Docking Fusion Pore Full Fusion III. 0. 0. II. IV. I. III.  IV. I. Photographs adapted from: R. Fesce et al., Trends Cell Biol., 4, 1994, 1-4 T.J. Schroeder, R. Borges, K. Pihel, C. Amatore, R.M. Wightman. Biophys. J., 70, 1996, 1061-1068.

  21. Docking Occurs at Specifically Structured Areas in Cell Membrane: Photographs adapted from: W. Almers et al., Nature 406, 2000, 849-854. Sketchs adapted from: Y. Humeau, F. Doussau, N.J. Grant, B. Poulain, Biochim., 82, 2000, 427-446.

  22. Docking Phase: Structure of SNAREs Protein Assembly

  23. Blocking Docking by Altering SNAREs Assembling with Botulin: Cells transfected through electroporation with modified plasmides / DNA. Secretion elicited 48 hrs later with Ca2+, 2.5 mM. C. Amatore, S. Arbault, I. Bonifas, F. Darchen, M. Guille, JP. Henry, to be published.

  24. 60 40 Cumulated Secretion Events 20 0 0 40 time (s) • Importance of SNAREs Assembling: Botulin + GFP Cells transfected through electroporation with modified plasmides / DNA. Secretion elicited 48 hrs later with Ca2+, 2.5 mM. C. Amatore, S. Arbault, I. Bonifas, F. Darchen, M. Guille, JP. Henry, to be published.

  25. Five Independent Physicochemical Stages Govern Exocytosis: 0. I. II. III. IV. Docking Fusion Pore Full Fusion III. 0. 0. II. IV. I. III.  IV. I. Photographs adapted from: R. Fesce et al., Trends Cell Biol., 4, 1994, 1-4 T.J. Schroeder, R. Borges, K. Pihel, C. Amatore, R.M. Wightman. Biophys. J., 70, 1996, 1061-1068.

  26. Pore Formation: The Stalk Model

  27. 2R • Regulating Exocytosis with Exogenous Bilipids Surface tension Edge tension . C. Amatore, Y. Bouret, L. Midrier, Chem. Eur. J., 5, 1999, 2151-2162.

  28. Control • Regulating Exocytosis with Exogenous Bilipids

  29. LPC Control AA O H O H LPC P O O O O N O C O H 2 AA • Regulating Exocytosis with Exogenous Bilipids

  30. O H O H LPC P O O O O N O C O H 2 AA • Regulating Exocytosis with Exogenous Bilipids

  31. LPC (4 Hz) 1200 1000 Control 800 (2.5 Hz) Control 600 # Cumulated events AA 400 (1 Hz) AA 200 0 0 50 100 150 200 250 300 Time (s) • Regulating Exocytosis with Exogenous Bilipids 1400

  32. DU≠ pre - fusion full fusion • Regulating Exocytosis with Exogenous Bilipids

  33. 1400 DU≠ 1200 LPC n k = k0 exp(-bDU≠/kBT) 1000 800 Control 2.4 d(DU≠)LPC = kBT ln( )  - 1 kBT 4 600 Cumulated events 400 AA 200 2.4 d(DU≠)AA = kBT ln( )  + 2 kBT 0 1 0 50 100 150 200 250 300 Time (s) • Regulating Exocytosis with Exogenous Bilipids

  34. Release Through Initial Fusion Pore: n = 2 F = 96 500 Cb <Dgranule>=4.8 10-8 cm2s-1 <Cgranule> = 0.6 M Rpore /nm ≈ 0.3x ifoot /pA C. Amatore, Y. Bouret, L. Midrier, Chem. Eur. J., 5, 1999, 2151-2162.

  35. Release Through Initial Fusion Pore: Rpore /nm ≈ 0.3x ifoot /pA Rpore= (1.5 ± 0.5) nm (patch-clamp measurements (Neher, Fernandez, etc.): Rpore between 1 and 3 nm)

  36. How Full Fusion May Follow Pore Release ? . C. Amatore, Y. Bouret, L. Midrier, Chem. Eur. J., 5, 1999, 2151-2162.

  37. How Full Fusion May Follow Pore Release ? . C. Amatore, Y. Bouret, L. Midrier, Chem. Eur. J., 5, 1999, 2151-2162.

  38. Full Fusion: Driving Force = Granule Swelling upon Release Concept based on de Gennes’ "Blob Theory« , see e.g.: J.L. Barrat, J.F. Joanny, in Adv. Chem. Phys. (I. Prigogine & S. Rice, eds.). Vol 44, pp. 37-33. Wiley NY, 1996. Photographs adapted from Geoffrey Fox: www.mpibpc.gwdg.de/inform/MpiNews/cientif/jahrg6/10.00/fig5.html

  39. Five Independent Physicochemical Stages Govern Exocytosis: 0. I. II. III. IV. Docking Fusion Pore Full Fusion III. 0. 0. II. IV. I. III.  IV. I. Photographs adapted from: R. Fesce et al., Trends Cell Biol., 4, 1994, 1-4 T.J. Schroeder, R. Borges, K. Pihel, C. Amatore, R.M. Wightman. Biophys. J., 70, 1996, 1061-1068.

  40. Diffusion: control by Dt/Rvesicle2 Rate of full fusion: surface area increases • Full Fusion: Two Phenomena Govern Spike Shapes: . C. Amatore, Y. Bouret, L. Midrier, Chem. Eur. J., 5, 1999, 2151-2162.

  41. Diffusion: control by Dt/Rvesicle2 Rate of full fusion: surface area increases • Full Fusion: Two Phenomena Govern Spike Shapes: Release elicited by 10s BaCl2, 2 mM, in Locke buffer with MgCl2, 0.7 mM. C. Amatore, Y. Bouret, L. Midrier, Chem. Eur. J., 5, 1999, 2151-2162.

  42. Full Fusion Kinetics • Amperommetry: Area Time (ms) • Evanescent wave spectroscopy: W. Almers et al., Nature 406, 2000, 849-854.

  43. "Seeing" & "Measuring" :Fluorescence and Amperommetry

  44. Energy released:(a) • Dissipation of energy released:(b) • First Half of Full Fusion C. Amatore, Y. Bouret, E.R. Travis, R.M. Wightman, Biochim., 82, 2000, 481-496. (a) : Energy of a membrane pore: Taupin and de Gennes (b) : Rate law for viscous dissipation: F. Brochard-Wyart & colls., PNAS, 96, 1999,10591-10596.

  45. 0.8 0.6 (R / R ) 0.4 vesicle 0.2 0 0 0.25 0.5 0.75 1 t / t 80% • First Half of Full Fusion: • Dissipation of Cell and Vesicle Membrane High Tensions C. Amatore, Y. Bouret, E.R. Travis, R.M. Wightman, Biochim., 82, 2000, 481-496.

  46. 1 0.8 R / Rvesicle 0.6 0.4 0.2 0 0.25 0.5 0.75 1 • Second Half of Full Fusion: Dissipation of Line Tension Between Relaxed Membranes C. Amatore, Y. Bouret, E.R. Travis, R.M. Wightman, Biochim., 82, 2000, 481-496.

  47. Testing Our Model C. Amatore, S. Arbault, I. Bonifas, Y. Bouret, M. Erard, M. Guille, ChemPhysChem, 4, 2003, 147-154.

  48. Ss large h • Testing Our Model fast C. Amatore, S. Arbault, I. Bonifas, Y. Bouret, M. Erard, M. Guille, ChemPhysChem, 4, 2003, 147-154.

  49. fast slow Ss Ss Ss large small large h h h • Testing Our Model fast C. Amatore, S. Arbault, I. Bonifas, Y. Bouret, M. Erard, M. Guille, ChemPhysChem, 4, 2003, 147-154.

  50. Reducing Ss, viz. the Driving Force, by Refraining Swelling Photographs adapted from Geoffrey Fox: www.mpibpc.gwdg.de/inform/MpiNews/cientif/jahrg6/10.00/fig5.html

More Related