270 likes | 418 Views
Towards a Bell-Curve Calculus For e-Science. Lin Yang Supervised by Alan Bundy, Dave Berry and Conrad Hughes. Content. Background Bell-Curve Calculus (BCC) Importance Definition Methodology Result and Analysis Evaluation Future Work and Conclusion. Background. Why QoS Properties
E N D
Towards a Bell-Curve Calculus For e-Science LinYang Supervised by Alan Bundy, Dave Berry and Conrad Hughes
Content Background Bell-CurveCalculus(BCC) Importance Definition Methodology ResultandAnalysis Evaluation Future Work and Conclusion
Background WhyQoSProperties Prediction,descriptionandevaluation Likelihoodofeachdatavalue Aims Define a suitable calculus for runtime Apply it to e-Science workflows
BCC(1)–Importance WhyBellCurve An average case analysis: likely or unlikely Easy to store,calculate and propagate Deal with complex workflows efficiently
BCC(2)–Importance Bell Curve = Normal Distribution Commonly occurs in the real world Evidence Experimental evidence Central Limit Theorem
BCC(3)–Definition BellCurve
BCC(4)–Definition QoSProperty: Runtime FourwaysofcombiningGridServices Sequential Parallel_All Parallel_First Conditional Fourfundamentalcombinationfunctions: sum, max, min & cond
BCC(5)–Definition–FourCombinations Sequential (sum) Parallel_All (max) Parallel_First (min) Conditional (cond)
BCC(6)–Methodology Twoinputbellcurves and Oneoutputbellcurve Thecombinationmethod = ParametersCalculation e.g.and
BCC(7)–Methodology Twomaintasks Tofindasatisfactoryformula foreachcombinationmethod Toevaluateaccuracy and efficiency Agrajag DevelopedbyConradHughes Define classic distribution functions, operations and numeric approximation of function combinations
BCC(10)–Result&Analysis–Refine Perfectparameters DefinedinAgrajag Approximatetheperfectvalues Fixoneparameter Uselinearfunctiontoapproachtheperfectvaluesintermsoftheotherparameterastheasymptote Derivethelinearparameters
BCC(11)–Result&Analysis–Refine Useexponentialcompensation Getexponentialparameters Findtheregularpatternofthelinearandexponentialparametersintermsofthefirstparameter Combineanddescribetheperfectvalues intermsofthetwoBCCparameters
BCC (16) – Evaluation Two Methods Comparison with Agrajag Accuracy Efficiency Apply to use cases Brain atlas Extended workflows
BCC (20) – Evaluation – Extended Use Case sum0 max0 sum1 max2 cond1 sum4 sum2 +perc*softmean0 +(1-perc)*softmean1 max1 sum3 warp+reslice sum8 sum5 min0 sum9 sum6 min1 sum10 sum7 +convert +slicer
Future Work (1) Embed In Frameworks More Evaluation More complex workflows Real data More Calculi e.g. log-normal distribution More QoS Properties e.g. accuracy and reliability
Future Work (2) Extended TwelveFundamentalCombinationFunctions