1 / 14

Multivariate Analysemethoden

Multivariate Analysemethoden. Vorlesung. Multivariate Distanz – Multivariate Normalverteilung . Günter Meinhardt Johannes Gutenberg Universität Mainz. Iso-Distanz Konturen in 2D . Iso-Distanz-Konturen in 2D. Kreis.

grietje
Download Presentation

Multivariate Analysemethoden

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multivariate Analysemethoden Vorlesung Multivariate Distanz – Multivariate Normalverteilung Günter Meinhardt Johannes Gutenberg Universität Mainz

  2. Iso-Distanz Konturen in 2D Iso-Distanz-Konturen in 2D Kreis Kreis mit Radius c: Alle Punkte auf dem Kreisbogen haben euklidischen Abstand c zum Kreismittelpunkt c y x • Der Kreis ist die Grundform der Iso-Distanz Kontur im zweidimen- sionalen Raum (p = 2). • Er entspricht im Variablenraum einer Iso-Distanz-Kontur für 2 unkorrelierte (orthogonale) Variablen mit derselben Skalierung.

  3. Iso-Distanz Konturen in 2D Ellipse: Skalierung Ellipse mit Ellipsenradius c: Alle Punkte auf dem Ellipsenbogen haben, auf Standardskala normiert, denselben Abstand c zum Mittelpunkt y x v Standardskala: u

  4. Iso-Distanz Konturen in 2D Ellipse Translation Translation zum Punkt (x0,y0) ändert an dieser Eigenschaft nichts: v Standardskala: Standard- Transformation u

  5. Iso-Distanz Konturen in 2D Die Invarianz der Distanz im neuen Koordinatensystem mit geneigten Achsen (Korrelation der Variablen) ist über eine Rotation der Koordinaten (anticlock) erklärt: Standard-Ellipse Neigung Korrelation r Koordinaten Korrelierte Achsen Mit der Transformation v u erfüllen alle Ellipsenpunkte: [Tafel: cos a]

  6. polar kartesisch polar kartesisch Iso-Distanz Konturen in 2D Ellipsen sind in kartesischen Koordinaten unpraktisch zu zeichnen. Man geht über zur Darstellung in Polarkoordinaten. Standard-Ellipse: Zeichen-Routine polar kartesisch Es gelten die Transformationen: Zum Zeichnen muß die Ellipsengleichung als Gleichung in Polarkoordinaten (Vektorlänge in Abhängigkeit des Winkels a) umgeschrieben werden

  7. Iso-Distanz Konturen in 2D Von der Darstellung in Polarkoordinaten kann einfach in kartesische Koordinaten zurückgerechnet werden (Setzen der Ellipsenpunkte) Standard-Ellipse: Zeichen-Routine Setze damit Verfahren 1. Variiere a von –p bis p (= ein Kreisumlauf). 2. Für jeden Winkel a berechne q = tan-1(a). 3. Berechne dann 4. Berechne damit r. 5. Berechne dann x,y: [Excel-Sheet]

  8. f(z) f(z) 0.4 0.4 0.4 0.4 68.26% 95.5% 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 z z -3 -3 -2 -2 -1 -1 1 1 2 2 3 3 -3 -3 -2 -2 -1 -1 1 1 2 2 3 3 Multivariate Normalverteilung 1 D-Normal Verteilung Die Funktion hat Fläche Die auf die Fläche 1 normierte Funktion heißt Normalverteilung (Gauss-Verteilung). Mit ihr sind Wahrscheinlichkeiten als Flächen- Anteile für z - Standardvariablen definierbar. (Standard-NV) [Kurzübung]

  9. Dann definiert mit die Inverse der Varianz- Kovarianz Matrix S. die verallgemeinerte quadrierte Distanz im multivariaten Raum. Sie heißt quadrierte Mahalanobis-Distanz. Mahalanobisdistanz p-variater Fall Man bemerke daß ist. Man habe nun nicht eine, sondern p Variablen: (jeder Messpunkt ist ein p- dimensionaler Vektor und der Zentroid ist ein p- dimensionaler Vektor) mit Zentroid Mahalanobis- Distanz [Excel-Beispiel 2D]

  10. Multivariate Normalverteilung p D-Normal Verteilung Die Funktion hat Volumen Die auf Volumen 1 normierte Funktion heißt multivariate Normalverteilung (multivariate Gauss-Verteilung). Mit ihr sind Wahrscheinlichkeiten als Anteile des Gesamtvolumens eines p-dimensionalen Ellipsoids definiert. Die in ihrem Argument auftretende Mahalanobis-Distanz erfüllt die Bedingung: mit a einem zu setzenden alpha-Fehler Niveau. Alle Mahalanobisdistanzen D, die diese Bedingung erfüllen, erzeugen Konturen gleicher Wahrscheinlichkeit (iso-probability contours) mit P = 1-a in der multivariaten Normalverteilung.

  11. Multivariate Normalverteilung 2 D-Normal Verteilung Die multivariate Normalverteilung mit p = 2 Variablen (bivariate Normalverteilung) hat die Form Die im Argument auftretende Mahalanobis-Distanz definiert eine Ellipse im zweidimensionalen Raum für jede Konstante c: Diese ist eine Iso-Probability-Contour im obigen Sinne (s. multivariate NV, vorherige Folie) [Tafelbetrachtung]

  12. x2 x1 Multivariate Normalverteilung Bivariate Normalverteilung mit p = 2 Variablen und Korrelation r = 0.6 2 D-Normal Verteilung Density-Plot Contour-Plot x2 P=0.95 P=0.75 P=0.5 P=0.25 x1 Ellipsen gleicher Wahrscheinlichkeit und zugehöriges Distanzmaß (quadrierte Mahalanobis-Distanz) [Excel-Übung]

  13. und temporär Setze Iso-Distanz Konturen in 2D NV-2D-Ellipse: Zeichen-Routine (NV-Ellipse) 3. Berechne dann Und es gilt: a) a läuft von –p bis p (= ein Kreisumlauf) Verfahren b) c) [Excel-Sheet]

  14. Multivariate Normalverteilung p D-Normal Verteilung Die Ellipsen der Form sind zentriert in und haben Hauptachsen mit Eigenwertbedingung Eine Eigenwertzerlegung der Varianz-Kovarianz Matrix liefert somit die Hauptachsen des p- variaten Ellipsoids der multivariaten Normalverteilung Beispiel 2D Länge = Länge =

More Related