1 / 22

statistické testy

statistické testy. z náhodného výběru vyvozuji závěry ohledně základního souboru často potřebuji porovnat dva výběry mezi sebou, porovnat průměr náhodného výběru a teoretickou střední hodnotu, počty pozorované a očekávané atd. liší se hmotnost samic a samců?. mám hypotézu H: m f ≠ m m

grover
Download Presentation

statistické testy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. statistické testy • z náhodného výběru vyvozuji závěry ohledně základního souboru • často potřebuji porovnat dva výběry mezi sebou, porovnat průměr náhodného výběru a teoretickou střední hodnotu, počty pozorované a očekávané atd.

  2. liší se hmotnost samic a samců? • mámhypotézu H: mf≠mm • předpokládám, že se liší • hypotézu nemůžu potvrdit (verifikovat) → zkusím zamítnout (falzifikovat) nulovou hypotézu H0: mf = mm • mají stejnou hmotnost pokud ji zamítnu, přijmu opačnou alternativní hypotézu HA (tu moji původní) • průměr mf, mm se téměř určitě bude lišit. Bude se lišit tak, abych mohl zamítnout H0?

  3. statistické testy • z dat spočítám testovou statistiku, která má známé teoretické rozdělení (t, F, 2, U….) • lze určit, jakou hodnotu bude testová statistika mít, pokud platí H0 • na základě stupňů volnosti (d.f., s.v. – z počtu nezávislých pozorování) stanovím, jestli odchylky jsou jen dílem náhody - p

  4. statistické testy • definuji si hladinu významnosti α – pravděpodobnost, že zamítnu H0 ačkoli platí – chyba prvního druhu • většinou 5 % (= 0.05) • pokud spočítané p je menší než α – zamítám H0 a tím „přijímám“ HA

  5. statistické testy • jako výsledek statistického testu uvádím • hodnotu testové statistiky (t, F, 2, U…..) • stupně volnosti (degrees of freedom – d.f., s.v.) • dosažená hladina významnosti (p) • t = 3.414, d.f. = 28, p = 0.0215 • t (28) = 3.414, p = 0.0215 • t28 = 3.414, p = 0.0215

  6. Studentův t-test

  7. testuji, zda můj výběr má střední hodnotu shodnou s danou hodnotou – jednovýběrový t-test (H0: μ = k) • dlouhodobá průměrná denní teplota v červnu je rovna 17.5 °C. Byla letos stejná? • testuji, zda dva náhodné výběry (nezávislé) pochází ze stejného základního souboru (mají stejnou střední hodnotu) – dvouvýběrový t-test (H0: μA = μB) • hmotnost samic a samců,…. • testuji, zda rozdíl párových hodnot (závislých) je roven dané hodnotě (větš. 0) - párový t-test (H0:μ1- μ2 = 0) • hmotnost před a po zásahu, délka pravé a levé nohy,….

  8. Studentův t-test • předpoklad použití: • normalita dat • pracuji s průměry, pokud mám dostatek dat, tak se rozdělení blíží normálnímu (centrální limitní věta) • pokud mám dat málo, většinou nemůžu zamítnout že data nepochází z normálního rozdělení • ne kategoriální či ordinální stupnice! • shodnost variancí – ale různé modifikace

  9. Příklad: • měřím zadní stehno bruslařky a chci porovnat, jestli se liší samci a samice • chci zjistit, jestli se liší znalosti (= počet bodů v testu) žáků 2 gymnázií • měřím střevle ve dvou řekách a chci zjistit, jestli jsou stejně velké dvouvýběrový t-test

  10. Příklad: • měřím zadní stehno bruslařky a chci porovnat, jestli se liší levé a pravé • chci zjistit, jestli se liší znalosti (= počet bodů v testu) žáků před a po prázdninách / přednášce • vážím lidi (myši) před a po snězení 0.1 kg cukru – je změna 0.1 kg? párový t-test

  11. formální provedení • chci ukázat: střevle z povodí Stropnice jsou jinak velké než střevle z povodí Černé (musím zdůvodnit proč!) • formuluji hypotézu: H0: Výběry naměřených délek střevlí pochází z jednoho základního souboru (průměry se neliší) • alternativní hypotéza: HA: Výběry naměřených délek střevlí z povodí Stropnice i Černé nepochází z jednoho základního souboru (= střevle obou povodí jsou různě velké) • provedu testování, jak moc je pravděpodobné že oba výběry pochází ze stejného souboru • pokud je pravděpodobnost malá (p < 0.05), zamítnu H0 a akceptuji HA • pokud je p > 0.05, nemůžu zamítnout H0 (ale ani HA!)

  12. dvouvýběrový t-test • rovnají se rozptyly? • shodnost rozptylů testuji F-testem (H0: s21 = s22) • pokud p větší než 0.05 – nemůžu zamítnout H0 rozptyly se rovnají (asi) • pokud p menší než 0.05 – můžu zamítnout H0 rozptyly se nerovnají (asi)

  13. Statistica • data se zadávají jinak než v Excelu • každý sloupec je jedna proměnná • u t-testu je jedna kategoriální proměnná (zde povodí) a jedna kvantitativní (zde délka)

  14. dvouvýběrový t-test, data ve sloupci pod sebou dvouvýběrový t-test, data ve sloupcích vedle sebe (jako v Excelu) párový t-test, data ve sloupcích vedle sebe (jako v Excelu) jednovýběrový t-test na střední hodnotu

  15. výsledek testů se ukládá v samostatném souboru výsledek F-testu výsledek t-testu

  16. další výsledky, grafy apod.

  17. Grafické vyjádření • pro znázornění t-testu je vhodný krabicový graf

  18. výsledek • Průměrná velikost střevlí z povodí Stropnice a Černé se signifikantně liší (t (33) = -2.61, p = 0.013) • dobré je i uvést výsledek F-testu: Po nezamítnutí homogenity variancí (F(15,18) = 1.429, p = 0.466)….. • formálně – zamítám H0 o shodnosti velikostí střevlí z obou povodí….

  19. test jednostranný a dvoustranný • testuji zda A se liší od B (H0: A=B) – dvoustranný • testuji zda A je menší / větší než B (H0: A≤B) - jednostranný

  20. chyby statistických testů testu pravděpodobnost chyby je α = hladina významnosti rozhodnutí realita pravděpodobnost chyby je β = neznáme

More Related