1 / 6

Bagian 2

Metode Komputasi. Bagian 2. Metode Gradient Descent/Ascent. Dosen :. Deni Saepudin : Ruang C114 Telp . +628122086193. Gradien Descent. Diketahui permukaan z = f( x,y ) dengan kurva ketinggian dinyatakan pada gambar

gryta
Download Presentation

Bagian 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MetodeKomputasi Bagian2 Metode Gradient Descent/Ascent Dosen: DeniSaepudin : Ruang C114 Telp. +628122086193

  2. Gradien Descent • Diketahuipermukaan z = f(x,y) dengankurva ketinggiandinyatakan padagambar • Berangkatdarititik (x0, y0), nilai f menurun paling cepatdalamarah-f(x0,y0) • Titik minimum (x1,y1) tercapaisaatf(x1,y1)=(0, 0)

  3. Langkah-langkah • Berdasarkanprinsipkalkulus, pencariantitik minimum dapatdilakukandenganlangkah-langkahberikut: • Masukan : f(x,y), titikawal (x0,y0), ukuranlangkah, stopping kriteria  • Langkah-langkah (untukpeminimuman): Selama |f(x0, y0)|> masihberlaku (i) Hitungf(x0, y0) (ii) (x1,y1)= (x0,y0) - f(x0, y0) (iii) (x0,y0)=(x1,y1)

  4. Contoh 1: • Mencarititik minimum dari f(x,y) = x2+2y2 • Titikawal P0(x0,y0)=(2,1), ukuranlangkah = 0.1 • ∇f(x,y) = (2x, 4y) • Nilaifungsi di titikawalf(2,1) = 5. • Arahgerak agar nilai f menurun paling cepat di titik P0adalah -∇f(2,1) = (-4,-4) • Titikbaru (x1,y1) = (2,1) + (-4,-4) (iterasi 1) = (2,1) + 0.1(-4,-4) = (1.6, 0.6) • Nilaif(1.6, 0.6) = 2.56 + 2 0.36 = 2.56 + 0.72 = 3.28 • (x0,y0) = (1.6, 0.6)

  5. Contoh1 (lanjutan) • (x1,y1) = (1.6, 0.6) - ∇f(1.6,0.6) (iterasi 2) • = (1.6, 0.6) – 0.1(3.2, 2.4) = (1.28, 0.36) • Nilai f(1.28, 0.36) = 1.8976 • (x0,y0) = (1.28, 0.36) • Ulangiterus proses sampaikriteriapenghentiandicapai

  6. Latihan: • TerapkanmetodeGradient Descent untukmencarititik minimum darifungsi • f(x,y) = x2 - 4x + y2 + 6y + 8 • TitikAwal : (x0, y0) = (10, 5)

More Related