• 210 likes • 352 Views
G. Kaupp, M. R. Naimi-Jamal Powerpoint Presentation, ECM22 Budapest, August 26-31, 2004. G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004. G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004. Al-Berkovich.
E N D
G. Kaupp, M. R. Naimi-Jamal Powerpoint Presentation, ECM22 Budapest, August 26-31, 2004
G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Al-Berkovich loading: FN = k h3/2 k [µN/nm3/2] = indentation coefficient G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
The relation of normal force and normal displacement FN = k·h3/2 (k [µN/nm3/2] = indentation coefficient) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Crystalline SiO2 and SrTiO3 trigonal a-quartz monoclinic coesite (>2.2 GPa) tetragonal stishovite (>8.2 GPa) cubic SrTiO3(Pm-3m); tetragonal (I4/mcm) ? G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Anthracene, coefficients and work of indentation G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Isotropic and anisotropic indentation responce Far-reaching phenomena with crystals G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Face anisotropy in nanoindentations G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Appearances of nanoscratches by AFM Z range 50 nm ramp experiment constant normal force G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
normal force (µN) (normal force)1.5 (µN1.5) (normal force)2 (µN2) (a) (b) (c) The relation of lateral force and (fixed) normal force FL = K·FN3/2 (K = scratch coefficient [N-1/2]) The value for the lateral force gives the scratch work [µNµm] for 1 µm scratch length Fused quartz and cube corner indentation tip, edge in front Linear plot through the origin only with exponent 1.5 (not 1 or 2) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
y = 0,0047x + 3,8443 1 1 300 y = 0,0071x 2 - 61,218 2 200 lateral force (µN) 100 (a) 0 0 20000 40000 60000 (b) 200 1.5 1.5 (normal force) (µN ) y = 0,0001x + 33,419 160 120 lateral force (µN) 200 80 y = 0,0048x + 13,571 160 40 120 0 lateral force (µN) 0 250000 500000 750000 1000000 80 2 2 (d) (normal force) (µN ) 40 0 0 10000 20000 30000 40000 (normal force)1.5 (µN1.5) acceptable (c) invalid The relation of lateral force and (fixed) normal force SrTiO3 (100), 0°, cube corner edge in front exponent 1.5 (not 1 or 2) the steep line in (b) corresponds to phase transformed SrTiO3 G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Angular and facial dependence of specific scratch work on strontium titanateat different normal loads (WSc, spec = FL.1 [µNµm]) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Angular dependence of specific scratch work on (1-100) of a-quartz and crystal packing spec.WSc = FL.1 [µNµm] = work for 1 µm scratch length of the indented tip (1-100), scratch work per µm scratch length (FN=1482 µN): Angle µNµm 90° 206 45° 223 0° 225 c-direction: alternation of 0.5405nm Si-Si rows; the other directions are less distant and the skew (10-11) cleavage plane is cutting in c-direction G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Molecular migrations under (110) of thiohydantoin (a) 0° (c) 180° (d) 270° (b) 90° (P21/c) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Reason for the orientational specifity on (110) of thiohydantoin cleavage planes between steep (66°) monolayers Geometric model for the understanding of the marked anisotropies upon scratching over skew cleavage planes in four orthogonal directions In all directions: FL = K.FN3/2 is valid G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Nanoscratching of anthracene on (110) (110) on top G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Nanoscratching on the layers (001) on top anthracene ramp nanoscratching at 0-150 µN on (001) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Tetraphenylethene (P21) on (10-1) Poorvertical (010) cleavage planes between monolayers of bulky molecules G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Nanoscratching along the polar axis of ninhydrin edge in front 180° (P21) 180° side in front 180° Cube corner scratches on ninhydrin (110) along the polar axis G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Thiourea, anisotropic nanoscratching on (100) b a (100) c (image rotated by 10° around x and y) (Pbnm) a) along [010] (b) b) along [001] (c) ramp nanoscratching at 0-150 µN G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004