420 likes | 575 Views
Stratified Quasar Winds Revealed. Sarah Gallagher (UCLA) January 2007. (Urry & Padovani 1995). The Quasar Epoch: z=2-3. (Richards et al. 2006a; Nagamine et al. 2006). Normal Quasar. Ly CIV MgII H H . Quasars with Outflows: BAL Quasars.
E N D
Stratified Quasar Winds Revealed Sarah Gallagher (UCLA) January 2007 (Urry & Padovani 1995)
The Quasar Epoch: z=2-3 (Richards et al. 2006a; Nagamine et al. 2006)
Normal Quasar LyCIV MgII H H
Quasars with Outflows: BAL Quasars voutflow ~ (0.03-0.2)c Ly/NV SiIV CIV Broad Absorption Lines (P Cygni profiles)
Infrared Optical-UV X-ray `big blue bump’ lt days `torus’ 1-10 pc `corona’ ~AUs NASA/CXC
A Model for AllRadio-Quiet Quasars UV emission lines ~light yr (1017 cm) X-ray continuum source ~light hrs (1014-15 cm) UV/optical continuum source ~light hrs-days (1016 cm) (Gallagher et al. 2002a: Adapted from Königl & Kartje 1994; Murray et al. 1995)
Two Views Through the Wind X-ray UV shielding gas Broad Absorption Line (BAL) Quasars BAL Wind Does it exist?
X-ray Properties of Quasars 2 keV 2500 Å aox = 0.384 log (f2 keV / f2500 Å) (Laor et al. 1997)
UV Luminosity vs.aox brighter in X-rays Define: Daox=aox -aox (Luv) fainter in X-rays log(Luv) (ergs s-1 Hz-1) 228 SDSS Quasars with ROSAT(Strateva et al. 2005)
Bright Quasar Survey z<0.5 Sample BAL Quasars Daox X-ray weak (400x) X-ray normal 55 BQS Quasars with z<0.5(Data from Brandt, Laor, & Wills 2000)
X-ray Absorption by Neutral Gas G = 2 NH = almost optically thick to Compton scattering (assuming solar metallicity)
PG 2112+059 (z=0.466): First BAL Quasar X-ray Spectra G = 1.97±0.25; NH ~ 1022 cm-2 (Gallagher et al. 2001)
X-ray Spectroscopy of ~12 RQ BAL Quasars • normal underlying X-ray continua • significant intrinsic absorption • NH = (0.1-5.0) x 1023 cm-2 • from >5 keV continuum: • normal aox (UV/X-ray flux ratio) • not just simple absorption • partial coverage and/or ionized gas (e.g., Gallagher et al. 2002b; Chartas et al. 2002, 2003; Aldcroft & Green 2003; Grupe et al. 2003; Page et al. 2005; Shemmer et al. 2005)
PG 2112+059 Revisited: Dramatic Spectral Variability PG 2112+059:ASCA Oct 1999;ChandraSep 2002 (Gallagher et al., 2004)
PG 2112+059 Revisited: Comparison of Models FeKa (Gallagher et al. 2004)
Major Change Increased NH + + Chandra ASCA Partial-covering absorber model
fl (erg cm2 s1 Å) O VI Observed Wavelength (Å) Little Variability in UV BALs
Chandra BAL Quasar Survey Large, well-defined sample • 35 luminous BAL quasars • z = 1.4—2.9 • MB ~ -26.1 to -28.4 • UV spectra for all (from literature) • 4—7 ks exploratory observations • 35 observed; 27 detected (77%) (Gallagher et al. 2006) Collaborators: Niel Brandt, George Chartas, Gordon Garmire (Penn State), Robert Priddey (Hertfordshire), & Rita Sambruna (Goddard)
Exploratory Surveys: X-ray Data • Rough continuum shape: GHR • from hardness ratio: (hard-soft)/(hard+soft) (analogous to B-V spectral index) • Relative UV-to-X-ray power: Daox
All RQ BAL quasars show evidence for X-ray absorption (complex with NH ~ (1—80)x1022 cm-2) Spectral Shape vs. X-ray Weakness: X-ray Faint X-ray Hard normal RQ quasars: G = 2.0 ± 0.25 Daox = 0.0 ± 0.15 Softer (less absorbed) Harder (more absorbed) % covered Daox Fainter Brighter
Bright Quasar Survey z<0.5 Sample BAL Quasars Daox X-ray weak (400x) X-ray normal 55 BQS Quasars with z<0.5(Data from Brandt, Laor, & Wills 2000)
BQS + Chandra BAL Quasars Chandra BALQs Daox No correlation for BAL quasars.
UV Spectra:X-ray Bright vs. X-ray Weak CIV CIV SiIV SiIV X-ray BRIGHT X-ray FAINT
vmaxvs. Daox te~1 Daox High velocity appears to require large NH.
Conclusions I:X-ray Observations • compact & thick ‘X-ray—only’ absorbers • X-ray & UV absorption not consistent • NH and variability properties • some may be Compton-thick! • (te ~ 1; NH~1.5x1024 cm2) (Gallagher et al. 2006)
X-ray and UV Continua Emitting Regions Are Not Cospatial • Implied by Compton-thick X-ray absorption. • Consistent with results from gravitational micro-lensing. (Kochanek et al. 2006)
Conclusions I:X-ray Observations • compact & thick ‘X-ray—only’ absorbers • X-ray & UV absorption not consistent • some may be Compton-thick! • (te ~ 1; NH~1.5x1024 cm2) • likely correlation of vmax & Daox • first UV/X-ray correlation found supports radiative driving of UV outflows (Gallagher et al. 2006)
Link Between Shielding Gas and vmax thinner shield less X-ray weak thicker shield more X-ray weak larger Rlaunch lower vterm smaller Rlaunch higher vterm • (Gallagher et al. 2006; Gallagher & Everett 2007) vterm ~ (GMBH/Rlaunch)1/2 • (cf. Chelouche & Netzer 2000; Everett 2005)
IR Opt-UV X-ray `big blue bump’ <1 pc `torus’ 1-10 pc `corona’ ~AUs disk wind from here NASA/CXC
The Dusty Outflow • The inner radius of the dusty outflow is set by the temperature at which dust sublimates: • r=1.3(Luv/1046)½(T/1500)-2.8 pc (Adapted from Königl & Kartje 1994)
Sample SEDs of Non-BAL Quasars mid-infrared optical 8 m 5000 Å spectral indices (L~ ): ,ir,opt
IR-Luminous Quasars Typically Have Steeper Spectral Slopes (Gallagher et al., submitted)
F (erg s-1 cm-2 Hz-1) 1200 K black body (Å) Sample ‘Hot Bump’ (Rodríguez-Ardila& Mazzalay 2006)
Changing Shape of Dusty Outflow? Less Luminous More Luminous
BAL Quasar IRS Spectra silicates (Gallagher et al. in prep; see also Shi et al. 2006)
Clouds and a Torus (Urry & Padovani 1995)
Stratified Wind Driving Mechanisms • UV BAL wind • Radiation pressure on UV resonance lines • Dusty Outflow • Radiation pressure on dust • Shielding Gas • Continuum radiation pressure • Magneto-hydrodynamic driving?
Future Work 1. Accepted Spitzer Cycle 3 theory project. Illuminating the Dusty Wind: 3D Modeling of Quasar Silicate Emission Collaborators: John Everett (Wisconsin) & Dean Hines (SSC) 2. Chandra follow-up of vmax vs. ox correlation. 3. Suzaku (10-30 keV) follow-up of nearby Compton-thick BAL quasars. 4. Long term: Constellation-X spectroscopy of X-ray outflows in absorption.
Resolving the Shielding Gas with Constellation-X Model: Two component outflow with different ionization states, velocities, and velocity dispersions. (Flux matches BAL quasar PG1115+080.)