1 / 9

Three Dimensional Geometry ( Geometri Dimensi Tiga )

Three Dimensional Geometry ( Geometri Dimensi Tiga ). Angle in three dimensional ( sudut dalam dimensi tiga ). Learning Objectives ( Tujuan Pembelajaran ). Determining angles between two lines ( menentukan sudut antara garis dan bidang ) Determining angles between line and plane

hal
Download Presentation

Three Dimensional Geometry ( Geometri Dimensi Tiga )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Three Dimensional Geometry(GeometriDimensiTiga) Angle in three dimensional (sudutdalamdimensitiga)

  2. Learning Objectives(TujuanPembelajaran) • Determining angles between two lines (menentukansudutantaragarisdanbidang) • Determining angles between line and plane (menentukansudutantaragarisdanbidang) • Determining angles between two planes (menentukansudutantaraduabidang)

  3. Perhatikanbahwa: Sudut-sudutdalamruangdapatdibentukolehduaunsur: • Garisdangaris • Garisdanbidang • Bidangdanbidang

  4. Measure of angles in three dimension • Angles between line and line • Angle between line and plane • Angle between two plane

  5. Angle between line and line • Sudut antara

  6. Angle between line and line b besarsudutantaraduagarisadalahbesarsudutterkecil yang dibentukolehkedua garistersebut a

  7. H G E F D C A B Contoh: Diketahui kubus ABCD.EFGH Besar sudut antara garis-garis: a. AB dengan AH b. BG dengan BE c. AF dengan CH

  8. Pembahasan Besarsudutantara garis-garis: a. AB dengan AH = 90º b. BG dengan BE = 60º Karenasegitiga BEG adalahsegitigasamasisidimanasisi-sisinyamerupakan diagonal bidangkubus, sehingga BG=BE=EG c. AF dengan CH = 90º Karena AF tegaklurus CH (duagarisbersilangan) H G E F D C A B

  9. Angle between line and plane Sudutantaragarisa danbidangdilambangkan(a,)adalahsudutantara garis a dan proyeksinyapada . Perhatikangambardisamping! SudutantaragarisMN denganbidang V = sudutantaraMN dengan M’N =  MNM’ M N V M’

More Related