1 / 23

Brazing & Braze Welding With Oxyacetylene

Brazing & Braze Welding With Oxyacetylene. Definition. A group of process that use heat to melt a metallic bonding agent, but not the base metal. The adhesion quality of the bonding agent binds the parts together when cooled. Three Common Processes. Soldering Brazing Braze welding.

Download Presentation

Brazing & Braze Welding With Oxyacetylene

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Brazing & Braze Welding With Oxyacetylene

  2. Definition A group of process that use heat to melt a metallic bonding agent, but not the base metal. The adhesion quality of the bonding agent binds the parts together when cooled.

  3. Three Common Processes • Soldering • Brazing • Braze welding

  4. Non-fusion welding Advantages & Disadvantages What are the advantages of non fusion welding. What are some of the disadvantages of fusion welding.

  5. Four Requirements of Non fusion Welding • Clean metal • Appropriate filler rod • Correct flux • Heat

  6. Non-fusion Requirements1. Clean Metal Non-fusion processes bond metal by adhesion. Can you think of one critical condition that is required for adhesion to be successful? What is adhesion? Requires a clean surface --not a polished surface. Clean Polished What is the best method to use?

  7. Non-fusion Requirements2. Appropriate Filler Material • Different filler materials are available for non fusion welding. • Brazing: • Brazing rod are available as bare rods or flux coated. • Soldering: • Solder can be solid or flux core. • Flux core can be acid or rosin. • Can be tin, silver or zinc alloy. Is filler material available in other forms? Yes

  8. Non-fusion Requirements3. Flux • Three purposes of flux. • Chemically clean the metal • Shield from oxidation and atmospheric contamination • Promote wetting • Flux must be compatible with the metal and filler material. What are the three common forms that are used for fluxes?

  9. Non-fusion Requirements4. Heat • Sufficient heat (BTU”s) must be available to raise the base metal temperature above the melting point of the filler rod. • The decision on heat source to use is based on the mass of metal that must be heated, the welding process and the availability of equipment.

  10. Non fusion Heat Sources • Oxyacetylene • Air acetylene • Air propane (LPG) • Oxypropane • MAPP • Electric soldering iron • Electric soldering gun

  11. Controlling Heat • Metals are excellent conductors of heat • Heat applied to joint moves away from the joint. • The greater the mass of metal that must be heated--the greater the heat requirement. • Excessive heat will cause the flux to burn. • Contaminates the joint. • Joint must be re cleaned • Manipulation of the heat source may necessary to heat both pieces evenly.

  12. Soldering

  13. Definition A nonfusion process that uses a metal alloy that melts below 840 oF.

  14. Soldering Relies upon capillary action. • Solder is divided into two categories; • Soft • Hard What is capillary action? What are the requirements for capillary action? Describe soft soldering? How is hard soldering different from soft soldering?

  15. Soldering Process • The joint area is cleaned and fluxed. • A heat source is used to raise the temperature of the base metal above the melting of the filler metal (<840 oF). • The filler metal is added to the joint. • Filler material should melt from the heat of the metal, not the heat source. • The filler metal flows into the joint and adheres to the surfaces. • The heat source is removed and the filler metal solidifies, bonding the surfaces together.

  16. Tinning Tinning is the process of applying a thin layer of filler rod to the surface of the metal. When would the tinning process be used?

  17. Brazing • A process that uses a metal alloy that melts above 840 oF, but less than the melting point of the base metal. • Brazing relies on capillary action to draw the filler metal into the joint or to keep it in the joint.

  18. Brazing Process • The joint area is mechanically cleaned and fluxed • Flux can be applied before the joint is assembled, or during the brazing process. • The joint is assembled. • May require clamping. • A heat source is used to raise the temperature of the base metal above the melting of the filler metal (>840 oF). • Must insure the joint is not overheated. • If this occurs the flux will burn and contaminate the joint. • When the joint becomes contaminated it must be recleaned and refluxed before the welding can continue. • The filler metal is added to the joint. • The filler metal flows into the joint and adheres to the surfaces. • The heat source is removed and the filler metal solidifies, bonding the surfaces together.

  19. Brazing Joints • The tensile strength of brazing filler material is less than steel. • The strength of the weld is increased if the joints are modified to increase the surface area. Tensile strength of brazing rod is ~40,000 psi. Tensile strength of steel electrode is 36,000 to 50,000 psi.

  20. Braze welding • Process: • The joint area is cleaned and fluxed. • A heat source is used to raise the temperature of the base metal to the melting temperature of the filler metal. • If excessive heat is added to the joint, the flux will burn. • When this occurs the process must start over. • The filler metal is added to the joint. • The filler metal adheres to both surfaces forming a bead. • The puddle must be heated until the key hole collapses. • The heat source is removed and the filler metal solidifies, bonding the surfaces together. • A process that uses a metal alloy that melts above 840 oF, but less than the melding point of the base metal. • Braze welding is the same process as brazing except it does not use capillary action and a visible bead is formed.

  21. Braze WeldingKey Hole • When the brazing rod is melted in the puddle, it will bridge across at first--form a key hole • Sufficient heat must be added to cause the key hole to collapse. • Failure to collapse the key hole will result in a joint that has incomplete penetration.

  22. Braze WeldingJoints The five (5) standard joints can be used for braze welding. Name them. The five (5) standard welding positions can be used for braze welding. Name them.

  23. Questions?

More Related