1 / 27

P. Salabura Jagiellonian University Kraków/GSI hadron 2011

In-medium modification of hadrons experiment overview ( from cold matter to low energy HI collisions ). P. Salabura Jagiellonian University Kraków/GSI hadron 2011. Motivation. R. Rapp , J. Wambach, Adv. Nucl. Phys. 25 (2000 ). P. Muehlich et al . NPA 780 (2006).  meson.

hallam
Download Presentation

P. Salabura Jagiellonian University Kraków/GSI hadron 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. In-medium modification of hadronsexperimentoverview(fromcoldmatter to low energy HI collisions) P. Salabura JagiellonianUniversity Kraków/GSI hadron 2011

  2. Motivation R. Rapp, J. Wambach, Adv. Nucl. Phys. 25 (2000) P. Muehlich et al. NPA 780(2006)  meson „cold matter” • meson • at rest p = 0.3 GeV/c „hot and dense matter” • Many predictions for sizable modifications of meson spectral function A(m, p) in cold and hot nuclear matter: broadening and „dropping mass” scenarios • A(m,p) QCD vacuum properties via QCD sum rules (B. Kaempfer talk) • Experiments: +A, p+A,A+A  mesons: ,, , , ’ • cold matter, Spring8, CLAS @ JLAB, CBELSA/TAPS, : KEK E325 , ANKE, HADES • HI collisions: DLS, HADES, Helios, CERES, Na60, STAR, PHENIX, LHC..

  3. Experimental methods • Measure meson line shape in p()+A and A+A or/and Yield w.r.t NN case p () + A e+ r/ TF e- FSI ! NO FSI !

  4. in-medium width Transparency ratio in „cold matter” • „disapearance of meson in nuclear matter” Glauber Picture; CabreraNPA733(2004)130 Production Absorption FSI of decay products ! • ISI (not for ), Pauli-blocking, Fermi-motion, secondary processes, shadowing …. • normalization to C to • reduce nuclear effects absent for e+e-

  5. Signal extraction :+A • // e+e- (CLAS @JLAB) E (1.1-3.8) 0 (CBELSA/TAPS) E (1.2-2.2) CLAS:PRL 99 (2007) 262302 CBELSA/TAPS PRL 100 (2008)192302 • no  contribution • 0 FSI removed by cut on T >150 MeV • strong  contribution (in +N  ~ 3  ) • Combinatorial background measured by like sign method

  6.  Transparency from +A CLAS <p > =1.7 GeV/c CBELSA/TAPS <p > =1.1 GeV/c CLAS <p  > CBELSA/TAPS CLAS: PRL 105 (2010) 0112301 upper limit p [ MeV/c] •  in-medium  210 MeV (in  rest frame) • coll = v N  N > (3-4 x) „free”N ! n>2 particle interaction - > low. density approx? • larger TA seen in e+e- channel- / interferences? P. Muehlich and U. Mosel, NPA773, 156 (2006). M. Kuskalov, E. Hernandez, and E. Oset, EPJ. A 31, 245 (2007).

  7. -line shape in analysis M. Thiel: Thursday session E : 900-1300 MeV close to threshold CB/TAPS: Preliminary calculations: J.Weil GiBUU arXiv:1106.1344 0  • CB - Collisional broadenning consistent with TA • shift : mass shift with density • m* = m0 (1.0 – 0.16* 0/ ) • Line shape not sensitive to in-medium width/ mass due to strong suppression of in-medium decays • Yield ~ BW(m) * decay /tot  1/2

  8. Role of regenerationin TA :  , ,’ CBELSA/TAPS E (1.2-2.2) 0 A M. Nanova: Tuesday session •  absorption NOT affected by secondary reactions • „Fast”  are absorb similarly to  , • slow  are enhanced by secondary production NN , NN(1535) • weaker absorption of ’ (’ –N coupling) : ’ in-medium :25-30 MeV

  9.  Transparency from p +A A. Polyanskiy : Tuesday session ANKE : p @ 2.83 GeV K+ K- Preliminary Phys. Lett. B 695, 74-77 (2011). 0 < < 8 0 0.6 <p  < 1.6 GeV/c lab • p + A : in-medium ~ 33 -50 MeV @ <p > =1.1 GeV/c and 0:+A (Spring-8, JLab) : in-medium ~ 23-100 MeV @ <p > 1.7 GeV/c •   28 MeV from predictions (Valencia/Giessen) - kaon loop modification

  10. e+e- pairs from p+A: HADES Preliminary M. Weber : Friday • Large acceptance for pe+e- < 1GeV/c : • not measured by CLAS, KEK-E325 CLAS,KEK 0  N*/  ? VM cocktail : HADES + PYTHIA

  11. Comparison to NN reaction M. Weber talk on Friday Preliminary 0  ,N*/ Apart from Glauber model VM Apart scaling : particle producton A AA/NNpart= N0AA / N0NN • increase at low pe+e- for  and N*,  / - secondary reactions: • NN NN , NN* NNe+e- • comparison with GiBUU (J.Weil) • At high momenta : •  () ~ () ~ 0 A0.69  0.2

  12. / region calculations: J. Weil GiBUU arXiv:1106.1344 HADES CLAS PRL 99 (2007) 262302 p>0.8 GeV/c p>0.8 GeV/c p  1 GeV/c  217 MeV HADES p<0.8 GeV/c • HADES: p + Nb : • for pe+e- <0.8 GeV/c excess over pp: secondary  from N(1520),  (1700),… • Not seen in +A due to momentum cut? •  absorption compatible with CBTAPS • (GiBuu) : in-medium  150 MeV p<0.8 GeV/c

  13. Radiation from A+A @ SPS CERES @ SPS s=8.8 GeV Na60 @ SPS s=17.3 GeV PRL 96, 162302 (2006) • At SPS energies: • excess due to pion annihilation +-   l+ l- • excess related to  meson in-medium spectral function • Na60: no change in line shape for  and 

  14.  -meson in hot and dense matter Data : Na60 acceptance corrected : EPJC 59 (2009) 607 calculations: Hess/Rapp: NPA806(2008)339. „Baryonic loops ” pion loop direct  - N* / Dalitz decays: em . Transition form factor? •  - /N* couplings play big role in „rho” melting at SPS • Do these effects contribute to e+e- production at low energies?

  15. Baryonic sources at SIS18 HADES @ SIS18 s=2.6 GeV arXiv:1103.0876 C+C Ca+Ca TAPS - „freez-out” meson cocktail HADES, DLS e+e- • Baryonic sources : (1232) ~10-20%, N(1535,..)- 1-2%, N–N bremsstr.. • Pair excess is NOT related to  - scales as pions !

  16. Isolating „true” excess Baryonic sources from N N-”reference” PLB690(2010)118 Apart = 38 0 e+e-  subtracted „reference” N e+e- + N-N bremsstr. • Normalization to N0 takes care about Apart scaling • excess of radiation in 0.12 < M < 0.55

  17. Resonance „clock” Na60 data: EPJC 61 (2009) 711 arXiv:1103.0876 HADES Apart = 38 SIS18:  clock ? Apart :15 41 78 130 177 SPS:„ clock „ : 6 generations in fireball

  18. Helicity distributions e+  * • 0 • B=1 • „excess” • : B= 1 • : B= 1 • VM: M>0.6 • B = 0 • (at SPS) e- 0 excess VM • excess has polarization consistent with 

  19. / from HADES SIS18 : ArKcl s=2.6 GeV arXiv:1103.0876 • SIS18 : deep sub-threshold  production • large / ratio ,  absorption and enhanced  production ?

  20. /e+e- from Na60 In+In @ SPS s=17.3 GeV Na60: EPJC 64(2009)1 Na60: Eur.Phys.J. C 61 (2009) 711 e+e- e+e- • SPS:  absoption at low pt , no effect for  • no changes in  meson line shape

  21.  meson line shape from HI In+In @ SPS s=17.3 GeV Na60: EPJC 64(2009)1 • no evidance for in-medium  modifications

  22. Summary • Meson transparency in cold nuclear matter shows increased meson (, ,, ’ ) widths in-medium >> free • Estimates of meson absorption cross sections in nucleus indicate NVin-medium > NVfree : significant role of n (>2)- particle interactions ? • determination of  -meson shape in cold nuclear matter requires better understanding of /N* -Ne+e- transitions and role of secondary processes-important for HI collisions ! •  absorption observed in HI collisions (low pt ) , no effects found for  • e+e- excess in A+A collisions is related to recreation of short lived resonances : „resonance” clock” :  at SPS and baryonic resonances, ( ) at SIS18 • melting of the  meson in hot and dense matter (SPS) is dominated by baryonic effects in agreement with „hadronic” scenario

  23. back-up

  24.  production inp+A ANKE : p @ 2.83 GeV : differential cross sections • not explained yield at low momentum : • secondary processes? • at high momentum better agreement with models • for p > 1 GeV : •  in-medium 50 MeV Preliminary

  25. Effects of meson-baryon interactinos

  26. =

  27. 2/dof =1.8 2/dof =2.3 /=0.7±0.2 /=0.9±0.2 • Backgroundsubtracted • Datadescribed(both nuclei) assumming/mass modificationm*=m0(1-.092/0) • fit supports  * consistent with the vacuum for / • CB shape from mixed event but w.o absolute normalization (fit parameter)! • Fit, excluding excess region, gives / <0.15 (Cu) and <0.32(C) with CL of 95% ! In contrast to other pp data /~1 p+A @ 12 GeV KEK-PS E325 M. Naruki Phys.Rev.Lett 96 (2006) 092301

More Related