440 likes | 453 Views
LANL 2008. B. Plaster. First Results from the. UCNA Experiment. Leah Broussard (Duke/TUNL) Kevin Hickerson (Caltech) Adam Holley (NCSU) Russ Mammei (Virginia Tech) Michael Mendenhall (Caltech) Robert Pattie (NCSU). Raymond Rios (Idaho/LANL) Anne Sallaska (U Washington)
E N D
LANL 2008 B. Plaster First Results from the UCNA Experiment Leah Broussard (Duke/TUNL) Kevin Hickerson (Caltech) Adam Holley (NCSU) Russ Mammei (Virginia Tech) Michael Mendenhall (Caltech) Robert Pattie (NCSU) Raymond Rios (Idaho/LANL) Anne Sallaska (U Washington) Riccardo Schmid (Caltech) Sky Sjue (U Washington) Junhua Yuan (Caltech) Yanping Xu (NCSU) Several New Collaborators as of 2008 Run Brad Plaster, University of Kentucky LANL P-25 — November 5, 2008
Detailed design/performance of the Area B UCN source Mark Makela, Chris Morris, Andy Saunders Will talk about Physics motivation for UCNA Review of UCNA experiment Analysis techniques/results from 2007 run Status report on 2008 run LANL 2008 B. Plaster This talk Not talk about
= 1 (CVC) σ gV = f1 (q2 0 ) GF |Vud| weak magnetism θp θe p n e e gA = g1 (q2 0 ) GF |Vud| gA = eiφ gV O (5%) lattice QCD LANL 2008 B. Plaster Neutron β-decay
spin σ θp θe e− correlation −0.103(4) electron, β-asymmetry −0.1173(13) neutrino-asymmetry 0.983(4) p n e e 1 – 2 2 + 2 - a0 = A0 = −2 B0 = 2 1 + 32 1 + 32 1 + 32 Highest Sensitivity to LANL 2008 B. Plaster Correlation coefficients
1 GF2|Vud|2(1 + 32) (1 + RC) n LANL 2008 B. Plaster Neutron lifetime “Master Formula” Marciano and Sirlin (2006) 1.0389 ± 0.0004 (0.0008) δ(Vud) = ± 0.0002
ΔA/A [ % ] PERKEO II update: PERKEO II 0.6 H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008) PDG 2008 ILL-TPC 1.3 IAE-PNPI 1.2 Average of 4 published A results + 1 simultaneous A/B result [ Mostovoi et al. (2001) ] PERKEO I 1.7 = −1.2695 ± 0.0029 [0.23%] PDG Mean 1.1 LANL 2008 B. Plaster Status of A and Published 0.28%
Vud PDG 2008 neutron Vud = 0.9746 (4)τ(18)(2)RC LANL 2008 B. Plaster Status of n and neutron Vud Serebrov et al. (2005) Still no new (published) results since
Improvement in neutron sector Vud ? Resolve discrepancies in A If achieve agreement, , factor of 2 improvement Plus improvement in bottom-line precision on A: 0.6% ?? But must resolve n discrepancy !! LANL 2008 B. Plaster Status of Vud pion 0+ 0+ neutron PDG nuclear mirror transitions 19Ne, 21Na, 35Ar Naviliat-Cuncic and Severijns, arXiv:0809.0994
LANL 2008 B. Plaster Why measurement of A via UCN ? Systematic Corrections [ % ] Polarization / Spin-Flip Backgrounds Other PERKEO I (1986) 2.6 ~ 3 ~13 magnetic mirroring ILL (1997) 2.9 ~ 3 ~15 cos θ PNPI (1997) 23 small ~3 cos θ PERKEO II (2002) 1.1 0.5 small
LANL 2008 B. Plaster Why measurement of A via UCN ? Advantages of UCNA experiment (A via UCN) T < 335 nano-eV, v < 8 m/s, stored in material bottles 1) Polarization Expect to achieve ~100% polarizations via transport of UCN through 7-Tesla magnetic fields Spin-state selected via μ • B interaction, ± 60 neV/Tesla
prompt backgrounds environmental LANL 2008 B. Plaster Why measurement of A via UCN ? Advantages of UCNA experiment (A via UCN) T < 335 nano-eV, v < 8 m/s, stored in material bottles 2) Beam-related backgrounds Greatly reduced by operating “pulsed mode” spallation source coupled to superthermal UCN source
scint scint MWPC MWPC β-decay electron LANL 2008 B. Plaster Why measurement of A via UCN ? Advantages of UCNA experiment (A via UCN) T < 335 nano-eV, v < 8 m/s, stored in material bottles 3) New approach to electron detection MWPC + plastic scintillator Low sensitivity to gammas (primary bkg’d in cold neutron expt’s) Low-threshold MWPC for detection of low-energy-deposition Coulomb backscattering events
LANL 2008 B. Plaster Why measurement of A via UCN ? Advantages of UCNA experiment (A via UCN) T < 335 nano-eV, v < 8 m/s, stored in material bottles 4) Reduced neutron-generated backgrounds Long storage times for UCN in apparatus For given rate, need relatively smaller number of stored UCN as compared to cold neutron beam
vβ W(θ) 1 + PnA cos θ c LANL 2008 B. Plaster UCNA experiment 0.6-T field expansion Angular Distribution
LANL 2008 B. Plaster UCNA experiment 7-Tesla Polarizers spin flipper muon vetoes UCN UCN Beamline 1-Tesla Electron Spectrometer photograph 12/2007
LANL 2008 B. Plaster UCN spin polarization 7-Tesla Polarizer/Spin-Flipper Field Profile 420 neV μ•B barrier UCN flux 1-Tesla AFP spin-flip region Spin-flipping via Adiabatic Fast Passage [AFP] Resonator with nominal frequency of ~29 MHz Spin-flipping cancels systematic errors
LANL 2008 B. Plaster Spin-flip efficiency + Cu foil UCN flux AFP resonator g UCN detector
LANL 2008 B. Plaster Spin-flip efficiency Transmission measured to be 0.40 ± 0.05 % Spin-Flip Efficiency > 99.6%
off on LANL 2008 B. Plaster In-situ depolarized fraction 1-T electron spectrometer UCN detector B 7-T Polarizer AFP β-decay running look for “wrong spin” drain “right spin” UCN from SD2 source
LANL 2008 B. Plaster In-situ depolarized fraction Upper Limit of 0.65% on Depolarized Fraction Present During Any Run Quote 1.3% Systematic Spin Flipper State Change Dt for switcher leakage signal
LANL 2008 B. Plaster Electron detection Baseline requirements Low-sensitivity to backgrounds Minimal electron backscattering Reasonable energy resolution 25-μm entrance and exit windows 2007 Geometry 3.5-mm plastic scintillator: energy, trigger Cu decay trap e low-pressure MWPC with low-Z fill gas 2.5-μm mylar foil
3-m long Cu decay trap LANL 2008 B. Plaster Electron spectrometer 4.5-m long superconducting solenoid 1.0-Tesla field 0.6-Tesla field-expansion region [ BP et al., NIMA 595, 587 (2008) ]
PMT PMT LANL 2008 B. Plaster Electron detection MWPC 100-Torr neopentane 2.54-mm wire spacing on anode and 2 cathode planes (163 х 163) mm2 active area (x,y) reconstruction Fiducial volume definition [ T.M. Ito et al., NIMA 571, 676 (2007) ] Scintillator PMTs in 100-Torr N2 Axial fields ~300 Gauss
LANL 2008 B. Plaster Spectrometer performance suppression of gamma background [ PERKEO II dominant background ] MWPC: gamma suppression 113Sn 368 keV 2007 calibrations: 113Sn (368 keV), 207Bi (503 keV, 995 keV) ~310 p.e. / MeV, 5.6% at 1 MeV [ ~ 100 p.e./MeV in PERKEO II ]
LANL 2008 B. Plaster Spectrometer performance 113Sn 368 keV reconstruction of the center of Larmor spiral fiducial volume radius cut [decay trap walls]
Correct Type I MISID Type II Type III MISID Type IV + scattering off of decay trap foils + “lost events” LANL 2008 B. Plaster Event reconstruction scintillator scintillator decay trap foil decay trap foil MWPC MWPC
Evis (Etrue) Erecon (Evis) residuals small, ~5 keV LANL 2008 B. Plaster Monte Carlo: GEANT4 / PENELOPE 1) Reconstruct β-decay energy on event-by-event basis from measured “visible energy” deposition in scintillators “Invisible energy” loss in decay trap foils, MWPC windows/interior, and scintillator dead layer 2) Form experimental asymmetry, Aexp(Erecon) = P β cos θA
energy loss tail in steep part of β-decay spectrum Aexp (Erecon) β cos θ Global Backscattering LANL 2008 B. Plaster Monte Carlo: GEANT4 / PENELOPE 3) Correct experimental asymmetry for subtle effects β cos θ “acceptance” Unobservable backscattering β cos θ for all triggering events
LANL 2008 B. Plaster Systematic corrections analysis window 2007 Correction β cos θ −1.6% Backscattering +1.1%
LANL 2008 B. Plaster Uncertainties in corrections Uncertainty in correction for β cos θacceptance ? How well is dE/dx energy loss modeled ? Assign (conservative) 25% uncertainty for geometry considerations
LANL 2008 B. Plaster Uncertainties in corrections Uncertainty in backscattering correction ? GEANT4 Simulations tend to under-predict backscattering PENELOPE Assign 30% uncertainty to correction
778.4 (6.6) 783.2 (6.2) LANL 2008 B. Plaster β-decay energy spectra UCNA 2007 PERKEO II S/N 7:1 S/N 21:1
LANL 2008 B. Plaster Asymmetry extraction Recoil-order corrections were applied to asymmetries (weak magnetism, gAgV interference, nucleon recoil) Standard calculational procedure of Wilkinson (1982) Included Fermi Function
LANL 2008 B. Plaster UCNA 2007 result UCNA 2007 A = −0.1138 ± 0.0046 ± 0.0021
2008 Run : Statistics + Systematics < 1% Run I: 25-μm MWPC windows, 0.7-μm decay trap foils “Calibrate” MCs Completed July–September, ~10.5M collected Run II: 25-μm MWPC windows, 13-μm decay trap foils Completed Monday 6AM, ~10.0M collected Run III: 6-μm MWPC windows, 0.7-μm decay trap foils Optimal Geometry Starts this weekend, thru end-of-run LANL 2008 B. Plaster UCNA 2008 running 2007 Run 25-μm MWPC windows, 2.5-μm decay trap foils 0.781M β-decay events 0.396M passed cuts (tight fiducial cut), 4.1% statistical error Need ~8.5-10M events for 1% result (depending on fiducial cut)
25 μm MWPC Windows 6 μm MWPC Windows Factor ~2 LANL 2008 B. Plaster Reduction in 2008 systematics Bias to Asymmetry Decay Trap Foils β cos θ Backscattering 0.7 μm 1.5% −0.5% 13 μm 3.4% −2.7%
LANL 2008 B. Plaster UCNA 2008 running Run I Run II
LANL 2008 B. Plaster Projected impact of 2008/09 results
LANL 2008 B. Plaster Summary UCNA experiment has reported first-ever measurement of any neutron β-decay correlation parameter with UCN 4.5% “proof-of-principle” result 2008 data collection proceeding well Poised to produce very interesting and competitive result at 1% level Sub-1% level in 2009 running Higher rate: improved Fermi potential, beam current, SD2
Backgrounds vs. Spin State 0 – 800 keV background rates (all event types) East West no evident correlation (AFP-induced noise) 0.184 ± 0.004 AFP off 0.274 ± 0.005 AFP on 0.188 ± 0.004 0.268 ± 0.005
Decay Trap (x,y) Spectra 40 mm cut
NaI optical fibers β-scintillator 60Co GMS Gain Corrections GMS reference PMT LED box light guides to β-PMTs gain correction factor for ithβ-PMT position of LED peak in GMS reference PMT position of 60Co peak(s) in GMS reference PMT position of LED peak in ithβ-PMT
1.173 MeV 1.333 MeV GMS Gain Corrections East 60Co West 60Co