1 / 37

H.D. Choi and S.K. Kim Department of Nuclear Engineering, Seoul National University, Korea

The final meeting of IAEA CRP 200 6. 5. 29 – 6. 2. Calculation and Evaluation of (n,  ) Cross Sections for Producing 32 P, 105 Rh, 131 I and 192 Ir. Nuclear Data for Production of Therapeutic Radionuclides. H.D. Choi and S.K. Kim

hana
Download Presentation

H.D. Choi and S.K. Kim Department of Nuclear Engineering, Seoul National University, Korea

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The final meeting of IAEA CRP 2006. 5. 29 – 6. 2 Calculation and Evaluation of (n,) Cross Sections for Producing 32P, 105Rh, 131I and 192Ir Nuclear Data for Production of Therapeutic Radionuclides H.D. Choi and S.K. Kim Department of Nuclear Engineering, Seoul National University, Korea

  2. Radioisotopes : 32P, 105Rh, 131I, 192Ir Production : 31P(n,)32P, 104Ru(n,)105Ru, 130Te(n,)131Te, 191Ir(n,)192Ir Nuclear structure and decay data : ENSDF Experimental data : EXFOR Isomeric statesfor two isotopes : 131g,m1Te, 192g,m1,m2Ir Thermal and RR region : resonance parameters + NJOY Unresolved R region : libraries (ENDF/B-VI or JENDL-3.3) High energy region : TALYS calculation (default) (OMP + other parameters tuning) Integral data production & validation CRP Workscope

  3. Decay scheme of 32P 32P Production

  4. Thermal neutron capture cross section of 31P. 32P Production

  5. Thermal cross section : 172(4) mb Resonance parameters : JENDL-3.3 Negative energy resonance parameter tuning : ER = - 5.9 keV,  = 2.07 eV (tuned) High energy region : 545 keV – 20 MeV TALYS default calculation (local OMP) Consistency & improvement achieved EXFOR item (Macklin) at 30 keV : compilation error Derived integral cross section for T = 30 keV Maxwellian Data uncertainty input error 32P Production

  6. 31P(n,)32P reaction cross sections 32P Production

  7. 105RhProduction • Decay scheme of 105Ru and 105Rh

  8. 105RhProduction • Decay data for 105Ru, ground and isomeric states of 105Rh

  9. Thermal neutron cross section : two EXFOR items only both consistent  466(15) mb Resonance parameters : Mughabghab +  = 0.14 eV (tuned) at ER = - 941 eV Unresolved Resonance region (11 – 300 keV) : JENDL Higher energy region (above 300 keV) : TALYS calculation normalization factor 1.9 14 MeV cross section = 3 mb Wagner(1980,latest) : 0.86(15) mb, average : 1.0(2) mb 105RhProduction

  10. 104Ru(n,)105Ru reaction cross sections 105Rh Production

  11. Decay scheme of 131Te and 131I 131I production by 131g,mTe -decay • Two final states of 131Te 131mTe(30 hr)182.25 keV, 11/2-, 77.8% -decay, 22.2% IT 131gTe(25 m) g. s.,3/2+, 100% -decay

  12. 131I Production • Decay data for ground and isomeric states of 131Te and for 131I

  13. 130Te(n,)131Te reaction cross section (existing libraries) 131I Production

  14. 131I Production • Isomeric ratios for thermal neutron capture cross section of 130Te

  15. 131I Production • Thermal neutron capture cross section of 130Te

  16. 131I Production • Thermal neutron cross section : weighted ave. δ2 and σγ0 • σ0= 204(10) mb,δ2(25.3 meV) =0.058(3) • Resonance parameters : JENDL-3.3 +  = 0.06 eV at ER = - 89.5 eV • Higher energy region (31 keV – 20 MeV) : TALYS calculation • Fit to σtot(E),σg+m(E), σg(E) by fine tuning OMPs, • variation of target nucleus level density parameters, etc. • EXFOR entry (Dovbenko) for σg(E) : unit in mb (2nd CRP) • Improve TALYS prediction for σtot(E) around 1 MeV • Little improve for σinel(E) and σ(E)

  17. A fit to 130Te+n total reaction cross section tot(E) 131I Production A fit (continuous line) Default TALYS result (dash dotted) Fit without normalization (dotted) EXFOR data (symbol).

  18. 130Te(n,)131Te reaction cross section (this work) 131I Production

  19. 130Te+n reaction channels cross sections (1 keV - 20 MeV) 131I Production

  20. Energy variation of optical model potential depths 131I Production Other parameters : fixed during the fit (a= 0.665 fm, r= 1.22 fm, etc). Final OMPs within 2% change from global OMPs

  21. Branching ratios for 130Te(n,)131Te 131I Production

  22. Decay scheme of 192Ir 192Ir Production 1) Odd-odd tri-axially deformed nucleus 192Ir : isomeric triplet 2) Decay and structure properties for g.s. and 1st isomeric state : definite 3) 2nd isomeric state : long-lived isomer First discovery (1959) One(+1?) measurement : discoverer Two measurements on half-life Latest measurement (1991) : theoretical discussion only Spin-parity, level energy and decay : arguments left More measurements needed !

  23. 192Ir Production • Decay data for ground and isomeric states of 192Ir

  24. 192Ir Production • Thermal neutron capture cross sections of 191Ir

  25. 192Ir Production • Thermal neutron cross section : weighted ave. σγ0 • isomeric cross sections : branch ratios by Keish(1963) • Resonance parameters : ENDF/B-VI +  = 0.0837 eV at ER = - 0.854 eV • Higher energy region (0.3 keV – 20 MeV) : TALYS calculation • Fit to σ(E) by fine tuning OMPs + normalization • No experimental set for σtot(E), σel(E) • TALYS predictions for σγg(E), σγm1(E),σγm2(E)

  26. 191Ir(n,)192g,m1,m2Ir cross sections (this work) 192Ir Production Total capture cross section The resolved cross sections for ground state and two isomeric states are given separately.

  27. TALYSPredicting branching ratios of 191Ir(n,)192Ir reaction 192Ir Production

  28. 67Zn(n,p)67Cu cross sections (existing libraries + Qaim) 67Cu Production

  29. 64Zn(n,p)64Cu cross sections (existing libraries + this CRP) 64Cu Production

  30. Validation and Integral Quantities • Integral quantities for 31P(n,)32P cross section

  31. Validation and Integral Quantities • Integral quantities for 104Ru(n,)105Ru cross section

  32. Validation and Integral Quantities • Integral quantities for 130Te(n,)131Te cross section

  33. Validation and Integral Quantities • Integral quantities for 191Ir(n,)192Ir cross section

  34. Validation and Integral Quantities • Integral quantities for 191Ir(n,)192Ir cross section 1) Lower limit of resonance integral = 0.5 eV, 2) Lower limit of resonance integral = 0.62 eV, 3) Value for the 1st isomeric state with lower integral limit 0.62 eV, 4) Lower limit of resonance integral = 0.55 eV, 5) I0tot(0.50eV) = 3558 b, I0tot(0.62eV) = 2940 b, 6) I0m1(0.62eV) = 1969 b.

  35. Validation and Integral Quantities • Integral quantities for 67Zn(n,p)67Cu cross section *) Cf-252 neutron spectrum with effective temperature T=1.42 MeV and integration limit from 1 keV to 20 MeV were used. **) 14 MeV neutron spectrum with the same integration limit was used. ) 14 MeV d(Be) neutron spectrum.

  36. Validation and Integral Quantities • Integral quantities for 64Zn(n,p)64Cu cross section

  37. Much thanks to Dr. Dad. Jean Sublet, Arjan Koning, and Everyone !!!

More Related